This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The membership relation well-orders the class of ordinal numbers. This proof does not require the axiom of regularity. Proposition 4.8(g) of Mendelson p. 244. For a shorter proof requiring ax-un , see epweonALT . (Contributed by NM, 1-Nov-2003) Avoid ax-un . (Revised by BTernaryTau, 30-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | epweon | |- _E We On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onfr | |- _E Fr On |
|
| 2 | df-po | |- ( _E Po On <-> A. x e. On A. y e. On A. z e. On ( -. x _E x /\ ( ( x _E y /\ y _E z ) -> x _E z ) ) ) |
|
| 3 | eloni | |- ( x e. On -> Ord x ) |
|
| 4 | ordirr | |- ( Ord x -> -. x e. x ) |
|
| 5 | 3 4 | syl | |- ( x e. On -> -. x e. x ) |
| 6 | epel | |- ( x _E x <-> x e. x ) |
|
| 7 | 5 6 | sylnibr | |- ( x e. On -> -. x _E x ) |
| 8 | ontr1 | |- ( z e. On -> ( ( x e. y /\ y e. z ) -> x e. z ) ) |
|
| 9 | epel | |- ( x _E y <-> x e. y ) |
|
| 10 | epel | |- ( y _E z <-> y e. z ) |
|
| 11 | 9 10 | anbi12i | |- ( ( x _E y /\ y _E z ) <-> ( x e. y /\ y e. z ) ) |
| 12 | epel | |- ( x _E z <-> x e. z ) |
|
| 13 | 8 11 12 | 3imtr4g | |- ( z e. On -> ( ( x _E y /\ y _E z ) -> x _E z ) ) |
| 14 | 7 13 | anim12i | |- ( ( x e. On /\ z e. On ) -> ( -. x _E x /\ ( ( x _E y /\ y _E z ) -> x _E z ) ) ) |
| 15 | 14 | ralrimiva | |- ( x e. On -> A. z e. On ( -. x _E x /\ ( ( x _E y /\ y _E z ) -> x _E z ) ) ) |
| 16 | 15 | ralrimivw | |- ( x e. On -> A. y e. On A. z e. On ( -. x _E x /\ ( ( x _E y /\ y _E z ) -> x _E z ) ) ) |
| 17 | 2 16 | mprgbir | |- _E Po On |
| 18 | eloni | |- ( y e. On -> Ord y ) |
|
| 19 | ordtri3or | |- ( ( Ord x /\ Ord y ) -> ( x e. y \/ x = y \/ y e. x ) ) |
|
| 20 | biid | |- ( x = y <-> x = y ) |
|
| 21 | epel | |- ( y _E x <-> y e. x ) |
|
| 22 | 9 20 21 | 3orbi123i | |- ( ( x _E y \/ x = y \/ y _E x ) <-> ( x e. y \/ x = y \/ y e. x ) ) |
| 23 | 19 22 | sylibr | |- ( ( Ord x /\ Ord y ) -> ( x _E y \/ x = y \/ y _E x ) ) |
| 24 | 3 18 23 | syl2an | |- ( ( x e. On /\ y e. On ) -> ( x _E y \/ x = y \/ y _E x ) ) |
| 25 | 24 | rgen2 | |- A. x e. On A. y e. On ( x _E y \/ x = y \/ y _E x ) |
| 26 | df-so | |- ( _E Or On <-> ( _E Po On /\ A. x e. On A. y e. On ( x _E y \/ x = y \/ y _E x ) ) ) |
|
| 27 | 17 25 26 | mpbir2an | |- _E Or On |
| 28 | df-we | |- ( _E We On <-> ( _E Fr On /\ _E Or On ) ) |
|
| 29 | 1 27 28 | mpbir2an | |- _E We On |