This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A trichotomy law for ordinals. (Contributed by NM, 25-Mar-1995) (Proof shortened by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordtri1 | |- ( ( Ord A /\ Ord B ) -> ( A C_ B <-> -. B e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsseleq | |- ( ( Ord A /\ Ord B ) -> ( A C_ B <-> ( A e. B \/ A = B ) ) ) |
|
| 2 | ordn2lp | |- ( Ord A -> -. ( A e. B /\ B e. A ) ) |
|
| 3 | imnan | |- ( ( A e. B -> -. B e. A ) <-> -. ( A e. B /\ B e. A ) ) |
|
| 4 | 2 3 | sylibr | |- ( Ord A -> ( A e. B -> -. B e. A ) ) |
| 5 | ordirr | |- ( Ord B -> -. B e. B ) |
|
| 6 | eleq2 | |- ( A = B -> ( B e. A <-> B e. B ) ) |
|
| 7 | 6 | notbid | |- ( A = B -> ( -. B e. A <-> -. B e. B ) ) |
| 8 | 5 7 | syl5ibrcom | |- ( Ord B -> ( A = B -> -. B e. A ) ) |
| 9 | 4 8 | jaao | |- ( ( Ord A /\ Ord B ) -> ( ( A e. B \/ A = B ) -> -. B e. A ) ) |
| 10 | ordtri3or | |- ( ( Ord A /\ Ord B ) -> ( A e. B \/ A = B \/ B e. A ) ) |
|
| 11 | df-3or | |- ( ( A e. B \/ A = B \/ B e. A ) <-> ( ( A e. B \/ A = B ) \/ B e. A ) ) |
|
| 12 | 10 11 | sylib | |- ( ( Ord A /\ Ord B ) -> ( ( A e. B \/ A = B ) \/ B e. A ) ) |
| 13 | 12 | orcomd | |- ( ( Ord A /\ Ord B ) -> ( B e. A \/ ( A e. B \/ A = B ) ) ) |
| 14 | 13 | ord | |- ( ( Ord A /\ Ord B ) -> ( -. B e. A -> ( A e. B \/ A = B ) ) ) |
| 15 | 9 14 | impbid | |- ( ( Ord A /\ Ord B ) -> ( ( A e. B \/ A = B ) <-> -. B e. A ) ) |
| 16 | 1 15 | bitrd | |- ( ( Ord A /\ Ord B ) -> ( A C_ B <-> -. B e. A ) ) |