This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An "effective" form of Cantor's theorem canth . For any function F from the powerset of A to A , there are two definable sets B and C which witness non-injectivity of F . Corollary 1.3 of KanamoriPincus p. 416. (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | canth4.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( F ` ( `' r " { y } ) ) = y ) ) } |
|
| canth4.2 | |- B = U. dom W |
||
| canth4.3 | |- C = ( `' ( W ` B ) " { ( F ` B ) } ) |
||
| Assertion | canth4 | |- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( B C_ A /\ C C. B /\ ( F ` B ) = ( F ` C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | canth4.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( F ` ( `' r " { y } ) ) = y ) ) } |
|
| 2 | canth4.2 | |- B = U. dom W |
|
| 3 | canth4.3 | |- C = ( `' ( W ` B ) " { ( F ` B ) } ) |
|
| 4 | eqid | |- B = B |
|
| 5 | eqid | |- ( W ` B ) = ( W ` B ) |
|
| 6 | 4 5 | pm3.2i | |- ( B = B /\ ( W ` B ) = ( W ` B ) ) |
| 7 | simp1 | |- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> A e. V ) |
|
| 8 | simpl2 | |- ( ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) /\ x e. ( ~P A i^i dom card ) ) -> F : D --> A ) |
|
| 9 | simp3 | |- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( ~P A i^i dom card ) C_ D ) |
|
| 10 | 9 | sselda | |- ( ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) /\ x e. ( ~P A i^i dom card ) ) -> x e. D ) |
| 11 | 8 10 | ffvelcdmd | |- ( ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) /\ x e. ( ~P A i^i dom card ) ) -> ( F ` x ) e. A ) |
| 12 | 1 7 11 2 | fpwwe | |- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( ( B W ( W ` B ) /\ ( F ` B ) e. B ) <-> ( B = B /\ ( W ` B ) = ( W ` B ) ) ) ) |
| 13 | 6 12 | mpbiri | |- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( B W ( W ` B ) /\ ( F ` B ) e. B ) ) |
| 14 | 13 | simpld | |- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> B W ( W ` B ) ) |
| 15 | 1 7 | fpwwelem | |- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( B W ( W ` B ) <-> ( ( B C_ A /\ ( W ` B ) C_ ( B X. B ) ) /\ ( ( W ` B ) We B /\ A. y e. B ( F ` ( `' ( W ` B ) " { y } ) ) = y ) ) ) ) |
| 16 | 14 15 | mpbid | |- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( ( B C_ A /\ ( W ` B ) C_ ( B X. B ) ) /\ ( ( W ` B ) We B /\ A. y e. B ( F ` ( `' ( W ` B ) " { y } ) ) = y ) ) ) |
| 17 | 16 | simpld | |- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( B C_ A /\ ( W ` B ) C_ ( B X. B ) ) ) |
| 18 | 17 | simpld | |- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> B C_ A ) |
| 19 | cnvimass | |- ( `' ( W ` B ) " { ( F ` B ) } ) C_ dom ( W ` B ) |
|
| 20 | 3 19 | eqsstri | |- C C_ dom ( W ` B ) |
| 21 | 17 | simprd | |- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( W ` B ) C_ ( B X. B ) ) |
| 22 | dmss | |- ( ( W ` B ) C_ ( B X. B ) -> dom ( W ` B ) C_ dom ( B X. B ) ) |
|
| 23 | 21 22 | syl | |- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> dom ( W ` B ) C_ dom ( B X. B ) ) |
| 24 | dmxpid | |- dom ( B X. B ) = B |
|
| 25 | 23 24 | sseqtrdi | |- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> dom ( W ` B ) C_ B ) |
| 26 | 20 25 | sstrid | |- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> C C_ B ) |
| 27 | 13 | simprd | |- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( F ` B ) e. B ) |
| 28 | 16 | simprd | |- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( ( W ` B ) We B /\ A. y e. B ( F ` ( `' ( W ` B ) " { y } ) ) = y ) ) |
| 29 | 28 | simpld | |- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( W ` B ) We B ) |
| 30 | weso | |- ( ( W ` B ) We B -> ( W ` B ) Or B ) |
|
| 31 | 29 30 | syl | |- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( W ` B ) Or B ) |
| 32 | sonr | |- ( ( ( W ` B ) Or B /\ ( F ` B ) e. B ) -> -. ( F ` B ) ( W ` B ) ( F ` B ) ) |
|
| 33 | 31 27 32 | syl2anc | |- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> -. ( F ` B ) ( W ` B ) ( F ` B ) ) |
| 34 | 3 | eleq2i | |- ( ( F ` B ) e. C <-> ( F ` B ) e. ( `' ( W ` B ) " { ( F ` B ) } ) ) |
| 35 | fvex | |- ( F ` B ) e. _V |
|
| 36 | 35 | eliniseg | |- ( ( F ` B ) e. _V -> ( ( F ` B ) e. ( `' ( W ` B ) " { ( F ` B ) } ) <-> ( F ` B ) ( W ` B ) ( F ` B ) ) ) |
| 37 | 35 36 | ax-mp | |- ( ( F ` B ) e. ( `' ( W ` B ) " { ( F ` B ) } ) <-> ( F ` B ) ( W ` B ) ( F ` B ) ) |
| 38 | 34 37 | bitri | |- ( ( F ` B ) e. C <-> ( F ` B ) ( W ` B ) ( F ` B ) ) |
| 39 | 33 38 | sylnibr | |- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> -. ( F ` B ) e. C ) |
| 40 | 26 27 39 | ssnelpssd | |- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> C C. B ) |
| 41 | sneq | |- ( y = ( F ` B ) -> { y } = { ( F ` B ) } ) |
|
| 42 | 41 | imaeq2d | |- ( y = ( F ` B ) -> ( `' ( W ` B ) " { y } ) = ( `' ( W ` B ) " { ( F ` B ) } ) ) |
| 43 | 42 3 | eqtr4di | |- ( y = ( F ` B ) -> ( `' ( W ` B ) " { y } ) = C ) |
| 44 | 43 | fveq2d | |- ( y = ( F ` B ) -> ( F ` ( `' ( W ` B ) " { y } ) ) = ( F ` C ) ) |
| 45 | id | |- ( y = ( F ` B ) -> y = ( F ` B ) ) |
|
| 46 | 44 45 | eqeq12d | |- ( y = ( F ` B ) -> ( ( F ` ( `' ( W ` B ) " { y } ) ) = y <-> ( F ` C ) = ( F ` B ) ) ) |
| 47 | 28 | simprd | |- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> A. y e. B ( F ` ( `' ( W ` B ) " { y } ) ) = y ) |
| 48 | 46 47 27 | rspcdva | |- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( F ` C ) = ( F ` B ) ) |
| 49 | 48 | eqcomd | |- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( F ` B ) = ( F ` C ) ) |
| 50 | 18 40 49 | 3jca | |- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( B C_ A /\ C C. B /\ ( F ` B ) = ( F ` C ) ) ) |