This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem sdomnen

Description: Strict dominance implies non-equinumerosity. (Contributed by NM, 10-Jun-1998)

Ref Expression
Assertion sdomnen
|- ( A ~< B -> -. A ~~ B )

Proof

Step Hyp Ref Expression
1 brsdom
 |-  ( A ~< B <-> ( A ~<_ B /\ -. A ~~ B ) )
2 1 simprbi
 |-  ( A ~< B -> -. A ~~ B )