This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A slightly stronger form of Cantor's theorem: For 1 < n , n + 1 < 2 ^ n . Corollary 1.6 of KanamoriPincus p. 417. (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | canthp1 | |- ( 1o ~< A -> ( A |_| 1o ) ~< ~P A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1sdom2 | |- 1o ~< 2o |
|
| 2 | sdomdom | |- ( 1o ~< 2o -> 1o ~<_ 2o ) |
|
| 3 | 1 2 | ax-mp | |- 1o ~<_ 2o |
| 4 | relsdom | |- Rel ~< |
|
| 5 | 4 | brrelex2i | |- ( 1o ~< A -> A e. _V ) |
| 6 | djudom2 | |- ( ( 1o ~<_ 2o /\ A e. _V ) -> ( A |_| 1o ) ~<_ ( A |_| 2o ) ) |
|
| 7 | 3 5 6 | sylancr | |- ( 1o ~< A -> ( A |_| 1o ) ~<_ ( A |_| 2o ) ) |
| 8 | canthp1lem1 | |- ( 1o ~< A -> ( A |_| 2o ) ~<_ ~P A ) |
|
| 9 | domtr | |- ( ( ( A |_| 1o ) ~<_ ( A |_| 2o ) /\ ( A |_| 2o ) ~<_ ~P A ) -> ( A |_| 1o ) ~<_ ~P A ) |
|
| 10 | 7 8 9 | syl2anc | |- ( 1o ~< A -> ( A |_| 1o ) ~<_ ~P A ) |
| 11 | fal | |- -. F. |
|
| 12 | ensym | |- ( ( A |_| 1o ) ~~ ~P A -> ~P A ~~ ( A |_| 1o ) ) |
|
| 13 | bren | |- ( ~P A ~~ ( A |_| 1o ) <-> E. f f : ~P A -1-1-onto-> ( A |_| 1o ) ) |
|
| 14 | 12 13 | sylib | |- ( ( A |_| 1o ) ~~ ~P A -> E. f f : ~P A -1-1-onto-> ( A |_| 1o ) ) |
| 15 | f1of | |- ( f : ~P A -1-1-onto-> ( A |_| 1o ) -> f : ~P A --> ( A |_| 1o ) ) |
|
| 16 | pwidg | |- ( A e. _V -> A e. ~P A ) |
|
| 17 | 5 16 | syl | |- ( 1o ~< A -> A e. ~P A ) |
| 18 | ffvelcdm | |- ( ( f : ~P A --> ( A |_| 1o ) /\ A e. ~P A ) -> ( f ` A ) e. ( A |_| 1o ) ) |
|
| 19 | 15 17 18 | syl2anr | |- ( ( 1o ~< A /\ f : ~P A -1-1-onto-> ( A |_| 1o ) ) -> ( f ` A ) e. ( A |_| 1o ) ) |
| 20 | dju1dif | |- ( ( A e. _V /\ ( f ` A ) e. ( A |_| 1o ) ) -> ( ( A |_| 1o ) \ { ( f ` A ) } ) ~~ A ) |
|
| 21 | 5 19 20 | syl2an2r | |- ( ( 1o ~< A /\ f : ~P A -1-1-onto-> ( A |_| 1o ) ) -> ( ( A |_| 1o ) \ { ( f ` A ) } ) ~~ A ) |
| 22 | bren | |- ( ( ( A |_| 1o ) \ { ( f ` A ) } ) ~~ A <-> E. g g : ( ( A |_| 1o ) \ { ( f ` A ) } ) -1-1-onto-> A ) |
|
| 23 | 21 22 | sylib | |- ( ( 1o ~< A /\ f : ~P A -1-1-onto-> ( A |_| 1o ) ) -> E. g g : ( ( A |_| 1o ) \ { ( f ` A ) } ) -1-1-onto-> A ) |
| 24 | simpll | |- ( ( ( 1o ~< A /\ f : ~P A -1-1-onto-> ( A |_| 1o ) ) /\ g : ( ( A |_| 1o ) \ { ( f ` A ) } ) -1-1-onto-> A ) -> 1o ~< A ) |
|
| 25 | simplr | |- ( ( ( 1o ~< A /\ f : ~P A -1-1-onto-> ( A |_| 1o ) ) /\ g : ( ( A |_| 1o ) \ { ( f ` A ) } ) -1-1-onto-> A ) -> f : ~P A -1-1-onto-> ( A |_| 1o ) ) |
|
| 26 | simpr | |- ( ( ( 1o ~< A /\ f : ~P A -1-1-onto-> ( A |_| 1o ) ) /\ g : ( ( A |_| 1o ) \ { ( f ` A ) } ) -1-1-onto-> A ) -> g : ( ( A |_| 1o ) \ { ( f ` A ) } ) -1-1-onto-> A ) |
|
| 27 | eqeq1 | |- ( w = x -> ( w = A <-> x = A ) ) |
|
| 28 | id | |- ( w = x -> w = x ) |
|
| 29 | 27 28 | ifbieq2d | |- ( w = x -> if ( w = A , (/) , w ) = if ( x = A , (/) , x ) ) |
| 30 | 29 | cbvmptv | |- ( w e. ~P A |-> if ( w = A , (/) , w ) ) = ( x e. ~P A |-> if ( x = A , (/) , x ) ) |
| 31 | 30 | coeq2i | |- ( ( g o. f ) o. ( w e. ~P A |-> if ( w = A , (/) , w ) ) ) = ( ( g o. f ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) |
| 32 | eqid | |- { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a ( ( ( g o. f ) o. ( w e. ~P A |-> if ( w = A , (/) , w ) ) ) ` ( `' s " { z } ) ) = z ) ) } = { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a ( ( ( g o. f ) o. ( w e. ~P A |-> if ( w = A , (/) , w ) ) ) ` ( `' s " { z } ) ) = z ) ) } |
|
| 33 | 32 | fpwwecbv | |- { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a ( ( ( g o. f ) o. ( w e. ~P A |-> if ( w = A , (/) , w ) ) ) ` ( `' s " { z } ) ) = z ) ) } = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( ( ( g o. f ) o. ( w e. ~P A |-> if ( w = A , (/) , w ) ) ) ` ( `' r " { y } ) ) = y ) ) } |
| 34 | eqid | |- U. dom { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a ( ( ( g o. f ) o. ( w e. ~P A |-> if ( w = A , (/) , w ) ) ) ` ( `' s " { z } ) ) = z ) ) } = U. dom { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a ( ( ( g o. f ) o. ( w e. ~P A |-> if ( w = A , (/) , w ) ) ) ` ( `' s " { z } ) ) = z ) ) } |
|
| 35 | 24 25 26 31 33 34 | canthp1lem2 | |- -. ( ( 1o ~< A /\ f : ~P A -1-1-onto-> ( A |_| 1o ) ) /\ g : ( ( A |_| 1o ) \ { ( f ` A ) } ) -1-1-onto-> A ) |
| 36 | 35 | pm2.21i | |- ( ( ( 1o ~< A /\ f : ~P A -1-1-onto-> ( A |_| 1o ) ) /\ g : ( ( A |_| 1o ) \ { ( f ` A ) } ) -1-1-onto-> A ) -> F. ) |
| 37 | 23 36 | exlimddv | |- ( ( 1o ~< A /\ f : ~P A -1-1-onto-> ( A |_| 1o ) ) -> F. ) |
| 38 | 37 | ex | |- ( 1o ~< A -> ( f : ~P A -1-1-onto-> ( A |_| 1o ) -> F. ) ) |
| 39 | 38 | exlimdv | |- ( 1o ~< A -> ( E. f f : ~P A -1-1-onto-> ( A |_| 1o ) -> F. ) ) |
| 40 | 14 39 | syl5 | |- ( 1o ~< A -> ( ( A |_| 1o ) ~~ ~P A -> F. ) ) |
| 41 | 11 40 | mtoi | |- ( 1o ~< A -> -. ( A |_| 1o ) ~~ ~P A ) |
| 42 | brsdom | |- ( ( A |_| 1o ) ~< ~P A <-> ( ( A |_| 1o ) ~<_ ~P A /\ -. ( A |_| 1o ) ~~ ~P A ) ) |
|
| 43 | 10 41 42 | sylanbrc | |- ( 1o ~< A -> ( A |_| 1o ) ~< ~P A ) |