This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is numerable iff it can be well-ordered. (Contributed by Mario Carneiro, 5-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ween | |- ( A e. dom card <-> E. r r We A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac8b | |- ( A e. dom card -> E. r r We A ) |
|
| 2 | weso | |- ( r We A -> r Or A ) |
|
| 3 | vex | |- r e. _V |
|
| 4 | soex | |- ( ( r Or A /\ r e. _V ) -> A e. _V ) |
|
| 5 | 2 3 4 | sylancl | |- ( r We A -> A e. _V ) |
| 6 | 5 | exlimiv | |- ( E. r r We A -> A e. _V ) |
| 7 | unipw | |- U. ~P A = A |
|
| 8 | weeq2 | |- ( U. ~P A = A -> ( r We U. ~P A <-> r We A ) ) |
|
| 9 | 7 8 | ax-mp | |- ( r We U. ~P A <-> r We A ) |
| 10 | 9 | exbii | |- ( E. r r We U. ~P A <-> E. r r We A ) |
| 11 | 10 | biimpri | |- ( E. r r We A -> E. r r We U. ~P A ) |
| 12 | pwexg | |- ( A e. _V -> ~P A e. _V ) |
|
| 13 | dfac8c | |- ( ~P A e. _V -> ( E. r r We U. ~P A -> E. f A. x e. ~P A ( x =/= (/) -> ( f ` x ) e. x ) ) ) |
|
| 14 | 12 13 | syl | |- ( A e. _V -> ( E. r r We U. ~P A -> E. f A. x e. ~P A ( x =/= (/) -> ( f ` x ) e. x ) ) ) |
| 15 | dfac8a | |- ( A e. _V -> ( E. f A. x e. ~P A ( x =/= (/) -> ( f ` x ) e. x ) -> A e. dom card ) ) |
|
| 16 | 14 15 | syld | |- ( A e. _V -> ( E. r r We U. ~P A -> A e. dom card ) ) |
| 17 | 6 11 16 | sylc | |- ( E. r r We A -> A e. dom card ) |
| 18 | 1 17 | impbii | |- ( A e. dom card <-> E. r r We A ) |