This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The disjoint union of two finite sets is finite. (Contributed by NM, 22-Oct-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djufi | |- ( ( A ~< _om /\ B ~< _om ) -> ( A |_| B ) ~< _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dju | |- ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) |
|
| 2 | 0elon | |- (/) e. On |
|
| 3 | relsdom | |- Rel ~< |
|
| 4 | 3 | brrelex1i | |- ( A ~< _om -> A e. _V ) |
| 5 | xpsnen2g | |- ( ( (/) e. On /\ A e. _V ) -> ( { (/) } X. A ) ~~ A ) |
|
| 6 | 2 4 5 | sylancr | |- ( A ~< _om -> ( { (/) } X. A ) ~~ A ) |
| 7 | sdomen1 | |- ( ( { (/) } X. A ) ~~ A -> ( ( { (/) } X. A ) ~< _om <-> A ~< _om ) ) |
|
| 8 | 6 7 | syl | |- ( A ~< _om -> ( ( { (/) } X. A ) ~< _om <-> A ~< _om ) ) |
| 9 | 8 | ibir | |- ( A ~< _om -> ( { (/) } X. A ) ~< _om ) |
| 10 | 1on | |- 1o e. On |
|
| 11 | 3 | brrelex1i | |- ( B ~< _om -> B e. _V ) |
| 12 | xpsnen2g | |- ( ( 1o e. On /\ B e. _V ) -> ( { 1o } X. B ) ~~ B ) |
|
| 13 | 10 11 12 | sylancr | |- ( B ~< _om -> ( { 1o } X. B ) ~~ B ) |
| 14 | sdomen1 | |- ( ( { 1o } X. B ) ~~ B -> ( ( { 1o } X. B ) ~< _om <-> B ~< _om ) ) |
|
| 15 | 13 14 | syl | |- ( B ~< _om -> ( ( { 1o } X. B ) ~< _om <-> B ~< _om ) ) |
| 16 | 15 | ibir | |- ( B ~< _om -> ( { 1o } X. B ) ~< _om ) |
| 17 | unfi2 | |- ( ( ( { (/) } X. A ) ~< _om /\ ( { 1o } X. B ) ~< _om ) -> ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ~< _om ) |
|
| 18 | 9 16 17 | syl2an | |- ( ( A ~< _om /\ B ~< _om ) -> ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ~< _om ) |
| 19 | 1 18 | eqbrtrid | |- ( ( A ~< _om /\ B ~< _om ) -> ( A |_| B ) ~< _om ) |