This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by Mario Carneiro, 12-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1osng | |- ( ( A e. V /\ B e. W ) -> { <. A , B >. } : { A } -1-1-onto-> { B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq | |- ( a = A -> { a } = { A } ) |
|
| 2 | 1 | f1oeq2d | |- ( a = A -> ( { <. a , b >. } : { a } -1-1-onto-> { b } <-> { <. a , b >. } : { A } -1-1-onto-> { b } ) ) |
| 3 | opeq1 | |- ( a = A -> <. a , b >. = <. A , b >. ) |
|
| 4 | 3 | sneqd | |- ( a = A -> { <. a , b >. } = { <. A , b >. } ) |
| 5 | 4 | f1oeq1d | |- ( a = A -> ( { <. a , b >. } : { A } -1-1-onto-> { b } <-> { <. A , b >. } : { A } -1-1-onto-> { b } ) ) |
| 6 | 2 5 | bitrd | |- ( a = A -> ( { <. a , b >. } : { a } -1-1-onto-> { b } <-> { <. A , b >. } : { A } -1-1-onto-> { b } ) ) |
| 7 | sneq | |- ( b = B -> { b } = { B } ) |
|
| 8 | 7 | f1oeq3d | |- ( b = B -> ( { <. A , b >. } : { A } -1-1-onto-> { b } <-> { <. A , b >. } : { A } -1-1-onto-> { B } ) ) |
| 9 | opeq2 | |- ( b = B -> <. A , b >. = <. A , B >. ) |
|
| 10 | 9 | sneqd | |- ( b = B -> { <. A , b >. } = { <. A , B >. } ) |
| 11 | 10 | f1oeq1d | |- ( b = B -> ( { <. A , b >. } : { A } -1-1-onto-> { B } <-> { <. A , B >. } : { A } -1-1-onto-> { B } ) ) |
| 12 | 8 11 | bitrd | |- ( b = B -> ( { <. A , b >. } : { A } -1-1-onto-> { b } <-> { <. A , B >. } : { A } -1-1-onto-> { B } ) ) |
| 13 | vex | |- a e. _V |
|
| 14 | vex | |- b e. _V |
|
| 15 | 13 14 | f1osn | |- { <. a , b >. } : { a } -1-1-onto-> { b } |
| 16 | 6 12 15 | vtocl2g | |- ( ( A e. V /\ B e. W ) -> { <. A , B >. } : { A } -1-1-onto-> { B } ) |