This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite set is equinumerous to itself added with one. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infdju1 | |- ( _om ~<_ A -> ( A |_| 1o ) ~~ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difun2 | |- ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) \ ( { 1o } X. 1o ) ) = ( ( { (/) } X. A ) \ ( { 1o } X. 1o ) ) |
|
| 2 | df-dju | |- ( A |_| 1o ) = ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) |
|
| 3 | df1o2 | |- 1o = { (/) } |
|
| 4 | 3 | xpeq2i | |- ( { 1o } X. 1o ) = ( { 1o } X. { (/) } ) |
| 5 | 1oex | |- 1o e. _V |
|
| 6 | 0ex | |- (/) e. _V |
|
| 7 | 5 6 | xpsn | |- ( { 1o } X. { (/) } ) = { <. 1o , (/) >. } |
| 8 | 4 7 | eqtr2i | |- { <. 1o , (/) >. } = ( { 1o } X. 1o ) |
| 9 | 2 8 | difeq12i | |- ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) = ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) \ ( { 1o } X. 1o ) ) |
| 10 | xp01disjl | |- ( ( { (/) } X. A ) i^i ( { 1o } X. 1o ) ) = (/) |
|
| 11 | disj3 | |- ( ( ( { (/) } X. A ) i^i ( { 1o } X. 1o ) ) = (/) <-> ( { (/) } X. A ) = ( ( { (/) } X. A ) \ ( { 1o } X. 1o ) ) ) |
|
| 12 | 10 11 | mpbi | |- ( { (/) } X. A ) = ( ( { (/) } X. A ) \ ( { 1o } X. 1o ) ) |
| 13 | 1 9 12 | 3eqtr4i | |- ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) = ( { (/) } X. A ) |
| 14 | reldom | |- Rel ~<_ |
|
| 15 | 14 | brrelex2i | |- ( _om ~<_ A -> A e. _V ) |
| 16 | 1on | |- 1o e. On |
|
| 17 | djudoml | |- ( ( A e. _V /\ 1o e. On ) -> A ~<_ ( A |_| 1o ) ) |
|
| 18 | 15 16 17 | sylancl | |- ( _om ~<_ A -> A ~<_ ( A |_| 1o ) ) |
| 19 | domtr | |- ( ( _om ~<_ A /\ A ~<_ ( A |_| 1o ) ) -> _om ~<_ ( A |_| 1o ) ) |
|
| 20 | 18 19 | mpdan | |- ( _om ~<_ A -> _om ~<_ ( A |_| 1o ) ) |
| 21 | infdifsn | |- ( _om ~<_ ( A |_| 1o ) -> ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) ~~ ( A |_| 1o ) ) |
|
| 22 | 20 21 | syl | |- ( _om ~<_ A -> ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) ~~ ( A |_| 1o ) ) |
| 23 | 13 22 | eqbrtrrid | |- ( _om ~<_ A -> ( { (/) } X. A ) ~~ ( A |_| 1o ) ) |
| 24 | 23 | ensymd | |- ( _om ~<_ A -> ( A |_| 1o ) ~~ ( { (/) } X. A ) ) |
| 25 | xpsnen2g | |- ( ( (/) e. _V /\ A e. _V ) -> ( { (/) } X. A ) ~~ A ) |
|
| 26 | 6 15 25 | sylancr | |- ( _om ~<_ A -> ( { (/) } X. A ) ~~ A ) |
| 27 | entr | |- ( ( ( A |_| 1o ) ~~ ( { (/) } X. A ) /\ ( { (/) } X. A ) ~~ A ) -> ( A |_| 1o ) ~~ A ) |
|
| 28 | 24 26 27 | syl2anc | |- ( _om ~<_ A -> ( A |_| 1o ) ~~ A ) |