This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fpwwe . (Contributed by Mario Carneiro, 15-May-2015) (Revised by AV, 20-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fpwwe.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( F ` ( `' r " { y } ) ) = y ) ) } |
|
| fpwwe.2 | |- ( ph -> A e. V ) |
||
| Assertion | fpwwelem | |- ( ph -> ( X W R <-> ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X ( F ` ( `' R " { y } ) ) = y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwwe.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( F ` ( `' r " { y } ) ) = y ) ) } |
|
| 2 | fpwwe.2 | |- ( ph -> A e. V ) |
|
| 3 | 1 | relopabiv | |- Rel W |
| 4 | 3 | a1i | |- ( ph -> Rel W ) |
| 5 | brrelex12 | |- ( ( Rel W /\ X W R ) -> ( X e. _V /\ R e. _V ) ) |
|
| 6 | 4 5 | sylan | |- ( ( ph /\ X W R ) -> ( X e. _V /\ R e. _V ) ) |
| 7 | 2 | adantr | |- ( ( ph /\ ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X ( F ` ( `' R " { y } ) ) = y ) ) ) -> A e. V ) |
| 8 | simprll | |- ( ( ph /\ ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X ( F ` ( `' R " { y } ) ) = y ) ) ) -> X C_ A ) |
|
| 9 | 7 8 | ssexd | |- ( ( ph /\ ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X ( F ` ( `' R " { y } ) ) = y ) ) ) -> X e. _V ) |
| 10 | 9 9 | xpexd | |- ( ( ph /\ ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X ( F ` ( `' R " { y } ) ) = y ) ) ) -> ( X X. X ) e. _V ) |
| 11 | simprlr | |- ( ( ph /\ ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X ( F ` ( `' R " { y } ) ) = y ) ) ) -> R C_ ( X X. X ) ) |
|
| 12 | 10 11 | ssexd | |- ( ( ph /\ ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X ( F ` ( `' R " { y } ) ) = y ) ) ) -> R e. _V ) |
| 13 | 9 12 | jca | |- ( ( ph /\ ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X ( F ` ( `' R " { y } ) ) = y ) ) ) -> ( X e. _V /\ R e. _V ) ) |
| 14 | simpl | |- ( ( x = X /\ r = R ) -> x = X ) |
|
| 15 | 14 | sseq1d | |- ( ( x = X /\ r = R ) -> ( x C_ A <-> X C_ A ) ) |
| 16 | simpr | |- ( ( x = X /\ r = R ) -> r = R ) |
|
| 17 | 14 | sqxpeqd | |- ( ( x = X /\ r = R ) -> ( x X. x ) = ( X X. X ) ) |
| 18 | 16 17 | sseq12d | |- ( ( x = X /\ r = R ) -> ( r C_ ( x X. x ) <-> R C_ ( X X. X ) ) ) |
| 19 | 15 18 | anbi12d | |- ( ( x = X /\ r = R ) -> ( ( x C_ A /\ r C_ ( x X. x ) ) <-> ( X C_ A /\ R C_ ( X X. X ) ) ) ) |
| 20 | 16 14 | weeq12d | |- ( ( x = X /\ r = R ) -> ( r We x <-> R We X ) ) |
| 21 | 16 | cnveqd | |- ( ( x = X /\ r = R ) -> `' r = `' R ) |
| 22 | 21 | imaeq1d | |- ( ( x = X /\ r = R ) -> ( `' r " { y } ) = ( `' R " { y } ) ) |
| 23 | 22 | fveqeq2d | |- ( ( x = X /\ r = R ) -> ( ( F ` ( `' r " { y } ) ) = y <-> ( F ` ( `' R " { y } ) ) = y ) ) |
| 24 | 14 23 | raleqbidv | |- ( ( x = X /\ r = R ) -> ( A. y e. x ( F ` ( `' r " { y } ) ) = y <-> A. y e. X ( F ` ( `' R " { y } ) ) = y ) ) |
| 25 | 20 24 | anbi12d | |- ( ( x = X /\ r = R ) -> ( ( r We x /\ A. y e. x ( F ` ( `' r " { y } ) ) = y ) <-> ( R We X /\ A. y e. X ( F ` ( `' R " { y } ) ) = y ) ) ) |
| 26 | 19 25 | anbi12d | |- ( ( x = X /\ r = R ) -> ( ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( F ` ( `' r " { y } ) ) = y ) ) <-> ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X ( F ` ( `' R " { y } ) ) = y ) ) ) ) |
| 27 | 26 1 | brabga | |- ( ( X e. _V /\ R e. _V ) -> ( X W R <-> ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X ( F ` ( `' R " { y } ) ) = y ) ) ) ) |
| 28 | 6 13 27 | pm5.21nd | |- ( ph -> ( X W R <-> ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X ( F ` ( `' R " { y } ) ) = y ) ) ) ) |