This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The compact-open topology is finer than the product topology restricted to continuous functions. (Contributed by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xkoptsub.x | ⊢ 𝑋 = ∪ 𝑅 | |
| xkoptsub.j | ⊢ 𝐽 = ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) | ||
| Assertion | xkoptsub | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝐽 ↾t ( 𝑅 Cn 𝑆 ) ) ⊆ ( 𝑆 ↑ko 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xkoptsub.x | ⊢ 𝑋 = ∪ 𝑅 | |
| 2 | xkoptsub.j | ⊢ 𝐽 = ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) | |
| 3 | 1 | topopn | ⊢ ( 𝑅 ∈ Top → 𝑋 ∈ 𝑅 ) |
| 4 | 3 | adantr | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → 𝑋 ∈ 𝑅 ) |
| 5 | fconstg | ⊢ ( 𝑆 ∈ Top → ( 𝑋 × { 𝑆 } ) : 𝑋 ⟶ { 𝑆 } ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑋 × { 𝑆 } ) : 𝑋 ⟶ { 𝑆 } ) |
| 7 | 6 | ffnd | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑋 × { 𝑆 } ) Fn 𝑋 ) |
| 8 | eqid | ⊢ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝑋 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ) } = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝑋 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ) } | |
| 9 | 8 | ptval | ⊢ ( ( 𝑋 ∈ 𝑅 ∧ ( 𝑋 × { 𝑆 } ) Fn 𝑋 ) → ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝑋 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 10 | 4 7 9 | syl2anc | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝑋 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 11 | simpr | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → 𝑆 ∈ Top ) | |
| 12 | 11 | snssd | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → { 𝑆 } ⊆ Top ) |
| 13 | 6 12 | fssd | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑋 × { 𝑆 } ) : 𝑋 ⟶ Top ) |
| 14 | eqid | ⊢ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) = X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) | |
| 15 | 8 14 | ptbasfi | ⊢ ( ( 𝑋 ∈ 𝑅 ∧ ( 𝑋 × { 𝑆 } ) : 𝑋 ⟶ Top ) → { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝑋 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ) } = ( fi ‘ ( { X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
| 16 | 4 13 15 | syl2anc | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝑋 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ) } = ( fi ‘ ( { X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
| 17 | fvconst2g | ⊢ ( ( 𝑆 ∈ Top ∧ 𝑛 ∈ 𝑋 ) → ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) = 𝑆 ) | |
| 18 | 17 | adantll | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑛 ∈ 𝑋 ) → ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) = 𝑆 ) |
| 19 | 18 | unieqd | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑛 ∈ 𝑋 ) → ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) = ∪ 𝑆 ) |
| 20 | 19 | ixpeq2dva | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) = X 𝑛 ∈ 𝑋 ∪ 𝑆 ) |
| 21 | eqid | ⊢ ∪ 𝑆 = ∪ 𝑆 | |
| 22 | 21 | topopn | ⊢ ( 𝑆 ∈ Top → ∪ 𝑆 ∈ 𝑆 ) |
| 23 | ixpconstg | ⊢ ( ( 𝑋 ∈ 𝑅 ∧ ∪ 𝑆 ∈ 𝑆 ) → X 𝑛 ∈ 𝑋 ∪ 𝑆 = ( ∪ 𝑆 ↑m 𝑋 ) ) | |
| 24 | 3 22 23 | syl2an | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → X 𝑛 ∈ 𝑋 ∪ 𝑆 = ( ∪ 𝑆 ↑m 𝑋 ) ) |
| 25 | 20 24 | eqtrd | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) = ( ∪ 𝑆 ↑m 𝑋 ) ) |
| 26 | 25 | sneqd | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → { X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) } = { ( ∪ 𝑆 ↑m 𝑋 ) } ) |
| 27 | eqid | ⊢ 𝑋 = 𝑋 | |
| 28 | fvconst2g | ⊢ ( ( 𝑆 ∈ Top ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) = 𝑆 ) | |
| 29 | 28 | adantll | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) = 𝑆 ) |
| 30 | 25 | adantr | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑘 ∈ 𝑋 ) → X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) = ( ∪ 𝑆 ↑m 𝑋 ) ) |
| 31 | 30 | mpteq1d | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) = ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ) |
| 32 | 31 | cnveqd | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑘 ∈ 𝑋 ) → ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) = ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ) |
| 33 | 32 | imaeq1d | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑘 ∈ 𝑋 ) → ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) = ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
| 34 | 33 | ralrimivw | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑘 ∈ 𝑋 ) → ∀ 𝑢 ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) = ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
| 35 | 29 34 | jca | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) = 𝑆 ∧ ∀ 𝑢 ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) = ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
| 36 | 35 | ralrimiva | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ∀ 𝑘 ∈ 𝑋 ( ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) = 𝑆 ∧ ∀ 𝑢 ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) = ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
| 37 | mpoeq123 | ⊢ ( ( 𝑋 = 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) = 𝑆 ∧ ∀ 𝑢 ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) = ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) → ( 𝑘 ∈ 𝑋 , 𝑢 ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) = ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) | |
| 38 | 27 36 37 | sylancr | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑘 ∈ 𝑋 , 𝑢 ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) = ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
| 39 | 38 | rneqd | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) = ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
| 40 | 26 39 | uneq12d | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( { X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) = ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) |
| 41 | 40 | fveq2d | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( fi ‘ ( { X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) = ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
| 42 | 16 41 | eqtrd | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝑋 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ) } = ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
| 43 | 42 | fveq2d | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝑋 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ) } ) = ( topGen ‘ ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) ) |
| 44 | 10 43 | eqtrd | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) = ( topGen ‘ ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) ) |
| 45 | 2 44 | eqtrid | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → 𝐽 = ( topGen ‘ ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) ) |
| 46 | 45 | oveq1d | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝐽 ↾t ( 𝑅 Cn 𝑆 ) ) = ( ( topGen ‘ ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ) |
| 47 | firest | ⊢ ( fi ‘ ( ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ) = ( ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) | |
| 48 | 47 | fveq2i | ⊢ ( topGen ‘ ( fi ‘ ( ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ) ) = ( topGen ‘ ( ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ) |
| 49 | fvex | ⊢ ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ∈ V | |
| 50 | ovex | ⊢ ( 𝑅 Cn 𝑆 ) ∈ V | |
| 51 | tgrest | ⊢ ( ( ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ∈ V ∧ ( 𝑅 Cn 𝑆 ) ∈ V ) → ( topGen ‘ ( ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ) = ( ( topGen ‘ ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ) | |
| 52 | 49 50 51 | mp2an | ⊢ ( topGen ‘ ( ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ) = ( ( topGen ‘ ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) |
| 53 | 48 52 | eqtri | ⊢ ( topGen ‘ ( fi ‘ ( ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ) ) = ( ( topGen ‘ ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) |
| 54 | 46 53 | eqtr4di | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝐽 ↾t ( 𝑅 Cn 𝑆 ) ) = ( topGen ‘ ( fi ‘ ( ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ) ) ) |
| 55 | xkotop | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) ∈ Top ) | |
| 56 | snex | ⊢ { ( ∪ 𝑆 ↑m 𝑋 ) } ∈ V | |
| 57 | mpoexga | ⊢ ( ( 𝑋 ∈ 𝑅 ∧ 𝑆 ∈ Top ) → ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ∈ V ) | |
| 58 | 3 57 | sylan | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ∈ V ) |
| 59 | rnexg | ⊢ ( ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ∈ V → ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ∈ V ) | |
| 60 | 58 59 | syl | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ∈ V ) |
| 61 | unexg | ⊢ ( ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∈ V ∧ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ∈ V ) → ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ∈ V ) | |
| 62 | 56 60 61 | sylancr | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ∈ V ) |
| 63 | restval | ⊢ ( ( ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ∈ V ∧ ( 𝑅 Cn 𝑆 ) ∈ V ) → ( ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) = ran ( 𝑥 ∈ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↦ ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) ) ) | |
| 64 | 62 50 63 | sylancl | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) = ran ( 𝑥 ∈ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↦ ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) ) ) |
| 65 | elun | ⊢ ( 𝑥 ∈ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↔ ( 𝑥 ∈ { ( ∪ 𝑆 ↑m 𝑋 ) } ∨ 𝑥 ∈ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) | |
| 66 | 1 21 | cnf | ⊢ ( 𝑥 ∈ ( 𝑅 Cn 𝑆 ) → 𝑥 : 𝑋 ⟶ ∪ 𝑆 ) |
| 67 | elmapg | ⊢ ( ( ∪ 𝑆 ∈ 𝑆 ∧ 𝑋 ∈ 𝑅 ) → ( 𝑥 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↔ 𝑥 : 𝑋 ⟶ ∪ 𝑆 ) ) | |
| 68 | 22 3 67 | syl2anr | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑥 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↔ 𝑥 : 𝑋 ⟶ ∪ 𝑆 ) ) |
| 69 | 66 68 | imbitrrid | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑥 ∈ ( 𝑅 Cn 𝑆 ) → 𝑥 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ) ) |
| 70 | 69 | ssrdv | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 Cn 𝑆 ) ⊆ ( ∪ 𝑆 ↑m 𝑋 ) ) |
| 71 | 70 | adantr | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑥 ∈ { ( ∪ 𝑆 ↑m 𝑋 ) } ) → ( 𝑅 Cn 𝑆 ) ⊆ ( ∪ 𝑆 ↑m 𝑋 ) ) |
| 72 | elsni | ⊢ ( 𝑥 ∈ { ( ∪ 𝑆 ↑m 𝑋 ) } → 𝑥 = ( ∪ 𝑆 ↑m 𝑋 ) ) | |
| 73 | 72 | adantl | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑥 ∈ { ( ∪ 𝑆 ↑m 𝑋 ) } ) → 𝑥 = ( ∪ 𝑆 ↑m 𝑋 ) ) |
| 74 | 71 73 | sseqtrrd | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑥 ∈ { ( ∪ 𝑆 ↑m 𝑋 ) } ) → ( 𝑅 Cn 𝑆 ) ⊆ 𝑥 ) |
| 75 | sseqin2 | ⊢ ( ( 𝑅 Cn 𝑆 ) ⊆ 𝑥 ↔ ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) = ( 𝑅 Cn 𝑆 ) ) | |
| 76 | 74 75 | sylib | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑥 ∈ { ( ∪ 𝑆 ↑m 𝑋 ) } ) → ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) = ( 𝑅 Cn 𝑆 ) ) |
| 77 | eqid | ⊢ ( 𝑆 ↑ko 𝑅 ) = ( 𝑆 ↑ko 𝑅 ) | |
| 78 | 77 | xkouni | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 Cn 𝑆 ) = ∪ ( 𝑆 ↑ko 𝑅 ) ) |
| 79 | eqid | ⊢ ∪ ( 𝑆 ↑ko 𝑅 ) = ∪ ( 𝑆 ↑ko 𝑅 ) | |
| 80 | 79 | topopn | ⊢ ( ( 𝑆 ↑ko 𝑅 ) ∈ Top → ∪ ( 𝑆 ↑ko 𝑅 ) ∈ ( 𝑆 ↑ko 𝑅 ) ) |
| 81 | 55 80 | syl | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ∪ ( 𝑆 ↑ko 𝑅 ) ∈ ( 𝑆 ↑ko 𝑅 ) ) |
| 82 | 78 81 | eqeltrd | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 Cn 𝑆 ) ∈ ( 𝑆 ↑ko 𝑅 ) ) |
| 83 | 82 | adantr | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑥 ∈ { ( ∪ 𝑆 ↑m 𝑋 ) } ) → ( 𝑅 Cn 𝑆 ) ∈ ( 𝑆 ↑ko 𝑅 ) ) |
| 84 | 76 83 | eqeltrd | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑥 ∈ { ( ∪ 𝑆 ↑m 𝑋 ) } ) → ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) ∈ ( 𝑆 ↑ko 𝑅 ) ) |
| 85 | eqid | ⊢ ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) = ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) | |
| 86 | 85 | rnmpo | ⊢ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) = { 𝑥 ∣ ∃ 𝑘 ∈ 𝑋 ∃ 𝑢 ∈ 𝑆 𝑥 = ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) } |
| 87 | 86 | eqabri | ⊢ ( 𝑥 ∈ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ↔ ∃ 𝑘 ∈ 𝑋 ∃ 𝑢 ∈ 𝑆 𝑥 = ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
| 88 | cnvresima | ⊢ ( ◡ ( ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ↾ ( 𝑅 Cn 𝑆 ) ) “ 𝑢 ) = ( ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∩ ( 𝑅 Cn 𝑆 ) ) | |
| 89 | 70 | adantr | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑅 Cn 𝑆 ) ⊆ ( ∪ 𝑆 ↑m 𝑋 ) ) |
| 90 | 89 | resmptd | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ↾ ( 𝑅 Cn 𝑆 ) ) = ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ) |
| 91 | 90 | cnveqd | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ◡ ( ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ↾ ( 𝑅 Cn 𝑆 ) ) = ◡ ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ) |
| 92 | 91 | imaeq1d | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( ◡ ( ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ↾ ( 𝑅 Cn 𝑆 ) ) “ 𝑢 ) = ( ◡ ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
| 93 | 88 92 | eqtr3id | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∩ ( 𝑅 Cn 𝑆 ) ) = ( ◡ ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
| 94 | fvex | ⊢ ( 𝑤 ‘ 𝑘 ) ∈ V | |
| 95 | 94 | rgenw | ⊢ ∀ 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ( 𝑤 ‘ 𝑘 ) ∈ V |
| 96 | eqid | ⊢ ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) = ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) | |
| 97 | 96 | fnmpt | ⊢ ( ∀ 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ( 𝑤 ‘ 𝑘 ) ∈ V → ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) Fn ( 𝑅 Cn 𝑆 ) ) |
| 98 | 95 97 | mp1i | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) Fn ( 𝑅 Cn 𝑆 ) ) |
| 99 | elpreima | ⊢ ( ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) Fn ( 𝑅 Cn 𝑆 ) → ( 𝑓 ∈ ( ◡ ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ↔ ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ‘ 𝑓 ) ∈ 𝑢 ) ) ) | |
| 100 | 98 99 | syl | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑓 ∈ ( ◡ ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ↔ ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ‘ 𝑓 ) ∈ 𝑢 ) ) ) |
| 101 | fveq1 | ⊢ ( 𝑤 = 𝑓 → ( 𝑤 ‘ 𝑘 ) = ( 𝑓 ‘ 𝑘 ) ) | |
| 102 | fvex | ⊢ ( 𝑓 ‘ 𝑘 ) ∈ V | |
| 103 | 101 96 102 | fvmpt | ⊢ ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) → ( ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ‘ 𝑓 ) = ( 𝑓 ‘ 𝑘 ) ) |
| 104 | 103 | adantl | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) ∧ 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ) → ( ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ‘ 𝑓 ) = ( 𝑓 ‘ 𝑘 ) ) |
| 105 | 104 | eleq1d | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) ∧ 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ) → ( ( ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ‘ 𝑓 ) ∈ 𝑢 ↔ ( 𝑓 ‘ 𝑘 ) ∈ 𝑢 ) ) |
| 106 | 102 | snss | ⊢ ( ( 𝑓 ‘ 𝑘 ) ∈ 𝑢 ↔ { ( 𝑓 ‘ 𝑘 ) } ⊆ 𝑢 ) |
| 107 | 89 | sselda | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) ∧ 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ) → 𝑓 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ) |
| 108 | elmapi | ⊢ ( 𝑓 ∈ ( ∪ 𝑆 ↑m 𝑋 ) → 𝑓 : 𝑋 ⟶ ∪ 𝑆 ) | |
| 109 | ffn | ⊢ ( 𝑓 : 𝑋 ⟶ ∪ 𝑆 → 𝑓 Fn 𝑋 ) | |
| 110 | 107 108 109 | 3syl | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) ∧ 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ) → 𝑓 Fn 𝑋 ) |
| 111 | simplrl | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) ∧ 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ) → 𝑘 ∈ 𝑋 ) | |
| 112 | fnsnfv | ⊢ ( ( 𝑓 Fn 𝑋 ∧ 𝑘 ∈ 𝑋 ) → { ( 𝑓 ‘ 𝑘 ) } = ( 𝑓 “ { 𝑘 } ) ) | |
| 113 | 110 111 112 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) ∧ 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ) → { ( 𝑓 ‘ 𝑘 ) } = ( 𝑓 “ { 𝑘 } ) ) |
| 114 | 113 | sseq1d | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) ∧ 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ) → ( { ( 𝑓 ‘ 𝑘 ) } ⊆ 𝑢 ↔ ( 𝑓 “ { 𝑘 } ) ⊆ 𝑢 ) ) |
| 115 | 106 114 | bitrid | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) ∧ 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ) → ( ( 𝑓 ‘ 𝑘 ) ∈ 𝑢 ↔ ( 𝑓 “ { 𝑘 } ) ⊆ 𝑢 ) ) |
| 116 | 105 115 | bitrd | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) ∧ 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ) → ( ( ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ‘ 𝑓 ) ∈ 𝑢 ↔ ( 𝑓 “ { 𝑘 } ) ⊆ 𝑢 ) ) |
| 117 | 116 | pm5.32da | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ‘ 𝑓 ) ∈ 𝑢 ) ↔ ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑓 “ { 𝑘 } ) ⊆ 𝑢 ) ) ) |
| 118 | 100 117 | bitrd | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑓 ∈ ( ◡ ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ↔ ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑓 “ { 𝑘 } ) ⊆ 𝑢 ) ) ) |
| 119 | 118 | eqabdv | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( ◡ ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) = { 𝑓 ∣ ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑓 “ { 𝑘 } ) ⊆ 𝑢 ) } ) |
| 120 | df-rab | ⊢ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ { 𝑘 } ) ⊆ 𝑢 } = { 𝑓 ∣ ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑓 “ { 𝑘 } ) ⊆ 𝑢 ) } | |
| 121 | 119 120 | eqtr4di | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( ◡ ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ { 𝑘 } ) ⊆ 𝑢 } ) |
| 122 | 93 121 | eqtrd | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∩ ( 𝑅 Cn 𝑆 ) ) = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ { 𝑘 } ) ⊆ 𝑢 } ) |
| 123 | simpll | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑅 ∈ Top ) | |
| 124 | 11 | adantr | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑆 ∈ Top ) |
| 125 | simprl | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑘 ∈ 𝑋 ) | |
| 126 | 125 | snssd | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → { 𝑘 } ⊆ 𝑋 ) |
| 127 | 1 | toptopon | ⊢ ( 𝑅 ∈ Top ↔ 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) |
| 128 | 123 127 | sylib | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) |
| 129 | restsn2 | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑅 ↾t { 𝑘 } ) = 𝒫 { 𝑘 } ) | |
| 130 | 128 125 129 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑅 ↾t { 𝑘 } ) = 𝒫 { 𝑘 } ) |
| 131 | snfi | ⊢ { 𝑘 } ∈ Fin | |
| 132 | discmp | ⊢ ( { 𝑘 } ∈ Fin ↔ 𝒫 { 𝑘 } ∈ Comp ) | |
| 133 | 131 132 | mpbi | ⊢ 𝒫 { 𝑘 } ∈ Comp |
| 134 | 130 133 | eqeltrdi | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑅 ↾t { 𝑘 } ) ∈ Comp ) |
| 135 | simprr | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑢 ∈ 𝑆 ) | |
| 136 | 1 123 124 126 134 135 | xkoopn | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ { 𝑘 } ) ⊆ 𝑢 } ∈ ( 𝑆 ↑ko 𝑅 ) ) |
| 137 | 122 136 | eqeltrd | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∩ ( 𝑅 Cn 𝑆 ) ) ∈ ( 𝑆 ↑ko 𝑅 ) ) |
| 138 | ineq1 | ⊢ ( 𝑥 = ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) = ( ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∩ ( 𝑅 Cn 𝑆 ) ) ) | |
| 139 | 138 | eleq1d | ⊢ ( 𝑥 = ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ( ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) ∈ ( 𝑆 ↑ko 𝑅 ) ↔ ( ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∩ ( 𝑅 Cn 𝑆 ) ) ∈ ( 𝑆 ↑ko 𝑅 ) ) ) |
| 140 | 137 139 | syl5ibrcom | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑥 = ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) ∈ ( 𝑆 ↑ko 𝑅 ) ) ) |
| 141 | 140 | rexlimdvva | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( ∃ 𝑘 ∈ 𝑋 ∃ 𝑢 ∈ 𝑆 𝑥 = ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) ∈ ( 𝑆 ↑ko 𝑅 ) ) ) |
| 142 | 141 | imp | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ∃ 𝑘 ∈ 𝑋 ∃ 𝑢 ∈ 𝑆 𝑥 = ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) → ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) ∈ ( 𝑆 ↑ko 𝑅 ) ) |
| 143 | 87 142 | sylan2b | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑥 ∈ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) → ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) ∈ ( 𝑆 ↑ko 𝑅 ) ) |
| 144 | 84 143 | jaodan | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑥 ∈ { ( ∪ 𝑆 ↑m 𝑋 ) } ∨ 𝑥 ∈ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) → ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) ∈ ( 𝑆 ↑ko 𝑅 ) ) |
| 145 | 65 144 | sylan2b | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑥 ∈ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) → ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) ∈ ( 𝑆 ↑ko 𝑅 ) ) |
| 146 | 145 | fmpttd | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑥 ∈ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↦ ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) ) : ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ⟶ ( 𝑆 ↑ko 𝑅 ) ) |
| 147 | 146 | frnd | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ran ( 𝑥 ∈ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↦ ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) ) ⊆ ( 𝑆 ↑ko 𝑅 ) ) |
| 148 | 64 147 | eqsstrd | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ⊆ ( 𝑆 ↑ko 𝑅 ) ) |
| 149 | tgfiss | ⊢ ( ( ( 𝑆 ↑ko 𝑅 ) ∈ Top ∧ ( ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ⊆ ( 𝑆 ↑ko 𝑅 ) ) → ( topGen ‘ ( fi ‘ ( ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ) ) ⊆ ( 𝑆 ↑ko 𝑅 ) ) | |
| 150 | 55 148 149 | syl2anc | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( topGen ‘ ( fi ‘ ( ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ) ) ⊆ ( 𝑆 ↑ko 𝑅 ) ) |
| 151 | 54 150 | eqsstrd | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝐽 ↾t ( 𝑅 Cn 𝑆 ) ) ⊆ ( 𝑆 ↑ko 𝑅 ) ) |