This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xkouni.1 | ⊢ 𝐽 = ( 𝑆 ↑ko 𝑅 ) | |
| Assertion | xkouni | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 Cn 𝑆 ) = ∪ 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xkouni.1 | ⊢ 𝐽 = ( 𝑆 ↑ko 𝑅 ) | |
| 2 | ima0 | ⊢ ( 𝑓 “ ∅ ) = ∅ | |
| 3 | 0ss | ⊢ ∅ ⊆ ∪ 𝑆 | |
| 4 | 2 3 | eqsstri | ⊢ ( 𝑓 “ ∅ ) ⊆ ∪ 𝑆 |
| 5 | 4 | a1i | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ) → ( 𝑓 “ ∅ ) ⊆ ∪ 𝑆 ) |
| 6 | 5 | ralrimiva | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ∀ 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ( 𝑓 “ ∅ ) ⊆ ∪ 𝑆 ) |
| 7 | rabid2 | ⊢ ( ( 𝑅 Cn 𝑆 ) = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ ∅ ) ⊆ ∪ 𝑆 } ↔ ∀ 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ( 𝑓 “ ∅ ) ⊆ ∪ 𝑆 ) | |
| 8 | 6 7 | sylibr | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 Cn 𝑆 ) = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ ∅ ) ⊆ ∪ 𝑆 } ) |
| 9 | eqid | ⊢ ∪ 𝑅 = ∪ 𝑅 | |
| 10 | simpl | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → 𝑅 ∈ Top ) | |
| 11 | simpr | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → 𝑆 ∈ Top ) | |
| 12 | 0ss | ⊢ ∅ ⊆ ∪ 𝑅 | |
| 13 | 12 | a1i | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ∅ ⊆ ∪ 𝑅 ) |
| 14 | rest0 | ⊢ ( 𝑅 ∈ Top → ( 𝑅 ↾t ∅ ) = { ∅ } ) | |
| 15 | 14 | adantr | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ↾t ∅ ) = { ∅ } ) |
| 16 | 0cmp | ⊢ { ∅ } ∈ Comp | |
| 17 | 15 16 | eqeltrdi | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ↾t ∅ ) ∈ Comp ) |
| 18 | eqid | ⊢ ∪ 𝑆 = ∪ 𝑆 | |
| 19 | 18 | topopn | ⊢ ( 𝑆 ∈ Top → ∪ 𝑆 ∈ 𝑆 ) |
| 20 | 19 | adantl | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ∪ 𝑆 ∈ 𝑆 ) |
| 21 | 9 10 11 13 17 20 | xkoopn | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ ∅ ) ⊆ ∪ 𝑆 } ∈ ( 𝑆 ↑ko 𝑅 ) ) |
| 22 | 8 21 | eqeltrd | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 Cn 𝑆 ) ∈ ( 𝑆 ↑ko 𝑅 ) ) |
| 23 | 22 1 | eleqtrrdi | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 Cn 𝑆 ) ∈ 𝐽 ) |
| 24 | elssuni | ⊢ ( ( 𝑅 Cn 𝑆 ) ∈ 𝐽 → ( 𝑅 Cn 𝑆 ) ⊆ ∪ 𝐽 ) | |
| 25 | 23 24 | syl | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 Cn 𝑆 ) ⊆ ∪ 𝐽 ) |
| 26 | eqid | ⊢ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } = { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } | |
| 27 | eqid | ⊢ ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) = ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) | |
| 28 | 9 26 27 | xkoval | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) = ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
| 29 | 28 | unieqd | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ∪ ( 𝑆 ↑ko 𝑅 ) = ∪ ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
| 30 | 1 | unieqi | ⊢ ∪ 𝐽 = ∪ ( 𝑆 ↑ko 𝑅 ) |
| 31 | ovex | ⊢ ( 𝑅 Cn 𝑆 ) ∈ V | |
| 32 | 31 | pwex | ⊢ 𝒫 ( 𝑅 Cn 𝑆 ) ∈ V |
| 33 | 9 26 27 | xkotf | ⊢ ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) : ( { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } × 𝑆 ) ⟶ 𝒫 ( 𝑅 Cn 𝑆 ) |
| 34 | frn | ⊢ ( ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) : ( { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } × 𝑆 ) ⟶ 𝒫 ( 𝑅 Cn 𝑆 ) → ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ⊆ 𝒫 ( 𝑅 Cn 𝑆 ) ) | |
| 35 | 33 34 | ax-mp | ⊢ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ⊆ 𝒫 ( 𝑅 Cn 𝑆 ) |
| 36 | 32 35 | ssexi | ⊢ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ∈ V |
| 37 | fiuni | ⊢ ( ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ∈ V → ∪ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) = ∪ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) | |
| 38 | 36 37 | ax-mp | ⊢ ∪ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) = ∪ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) |
| 39 | fvex | ⊢ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ∈ V | |
| 40 | unitg | ⊢ ( ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ∈ V → ∪ ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) = ∪ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) | |
| 41 | 39 40 | ax-mp | ⊢ ∪ ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) = ∪ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) |
| 42 | 38 41 | eqtr4i | ⊢ ∪ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) = ∪ ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) |
| 43 | 29 30 42 | 3eqtr4g | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ∪ 𝐽 = ∪ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) |
| 44 | 35 | a1i | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ⊆ 𝒫 ( 𝑅 Cn 𝑆 ) ) |
| 45 | sspwuni | ⊢ ( ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ⊆ 𝒫 ( 𝑅 Cn 𝑆 ) ↔ ∪ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ⊆ ( 𝑅 Cn 𝑆 ) ) | |
| 46 | 44 45 | sylib | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ∪ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ⊆ ( 𝑅 Cn 𝑆 ) ) |
| 47 | 43 46 | eqsstrd | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ∪ 𝐽 ⊆ ( 𝑅 Cn 𝑆 ) ) |
| 48 | 25 47 | eqssd | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 Cn 𝑆 ) = ∪ 𝐽 ) |