This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A discrete topology is compact iff the base set is finite. (Contributed by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | discmp | ⊢ ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Comp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distop | ⊢ ( 𝐴 ∈ Fin → 𝒫 𝐴 ∈ Top ) | |
| 2 | pwfi | ⊢ ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin ) | |
| 3 | 2 | biimpi | ⊢ ( 𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin ) |
| 4 | 1 3 | elind | ⊢ ( 𝐴 ∈ Fin → 𝒫 𝐴 ∈ ( Top ∩ Fin ) ) |
| 5 | fincmp | ⊢ ( 𝒫 𝐴 ∈ ( Top ∩ Fin ) → 𝒫 𝐴 ∈ Comp ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐴 ∈ Fin → 𝒫 𝐴 ∈ Comp ) |
| 7 | simpr | ⊢ ( ( 𝒫 𝐴 ∈ Comp ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 8 | 7 | snssd | ⊢ ( ( 𝒫 𝐴 ∈ Comp ∧ 𝑥 ∈ 𝐴 ) → { 𝑥 } ⊆ 𝐴 ) |
| 9 | vsnex | ⊢ { 𝑥 } ∈ V | |
| 10 | 9 | elpw | ⊢ ( { 𝑥 } ∈ 𝒫 𝐴 ↔ { 𝑥 } ⊆ 𝐴 ) |
| 11 | 8 10 | sylibr | ⊢ ( ( 𝒫 𝐴 ∈ Comp ∧ 𝑥 ∈ 𝐴 ) → { 𝑥 } ∈ 𝒫 𝐴 ) |
| 12 | 11 | fmpttd | ⊢ ( 𝒫 𝐴 ∈ Comp → ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) : 𝐴 ⟶ 𝒫 𝐴 ) |
| 13 | 12 | frnd | ⊢ ( 𝒫 𝐴 ∈ Comp → ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ⊆ 𝒫 𝐴 ) |
| 14 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) = ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) | |
| 15 | 14 | rnmpt | ⊢ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } |
| 16 | 15 | unieqi | ⊢ ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } |
| 17 | 9 | dfiun2 | ⊢ ∪ 𝑥 ∈ 𝐴 { 𝑥 } = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } |
| 18 | iunid | ⊢ ∪ 𝑥 ∈ 𝐴 { 𝑥 } = 𝐴 | |
| 19 | 16 17 18 | 3eqtr2ri | ⊢ 𝐴 = ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) |
| 20 | 19 | a1i | ⊢ ( 𝒫 𝐴 ∈ Comp → 𝐴 = ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ) |
| 21 | unipw | ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 22 | 21 | eqcomi | ⊢ 𝐴 = ∪ 𝒫 𝐴 |
| 23 | 22 | cmpcov | ⊢ ( ( 𝒫 𝐴 ∈ Comp ∧ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ⊆ 𝒫 𝐴 ∧ 𝐴 = ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ) → ∃ 𝑦 ∈ ( 𝒫 ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ∩ Fin ) 𝐴 = ∪ 𝑦 ) |
| 24 | 13 20 23 | mpd3an23 | ⊢ ( 𝒫 𝐴 ∈ Comp → ∃ 𝑦 ∈ ( 𝒫 ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ∩ Fin ) 𝐴 = ∪ 𝑦 ) |
| 25 | elinel2 | ⊢ ( 𝑦 ∈ ( 𝒫 ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ∩ Fin ) → 𝑦 ∈ Fin ) | |
| 26 | elinel1 | ⊢ ( 𝑦 ∈ ( 𝒫 ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ∩ Fin ) → 𝑦 ∈ 𝒫 ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ) | |
| 27 | 26 | elpwid | ⊢ ( 𝑦 ∈ ( 𝒫 ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ∩ Fin ) → 𝑦 ⊆ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ) |
| 28 | snfi | ⊢ { 𝑥 } ∈ Fin | |
| 29 | 28 | rgenw | ⊢ ∀ 𝑥 ∈ 𝐴 { 𝑥 } ∈ Fin |
| 30 | 14 | fmpt | ⊢ ( ∀ 𝑥 ∈ 𝐴 { 𝑥 } ∈ Fin ↔ ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) : 𝐴 ⟶ Fin ) |
| 31 | 29 30 | mpbi | ⊢ ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) : 𝐴 ⟶ Fin |
| 32 | frn | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) : 𝐴 ⟶ Fin → ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ⊆ Fin ) | |
| 33 | 31 32 | mp1i | ⊢ ( 𝑦 ∈ ( 𝒫 ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ∩ Fin ) → ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ⊆ Fin ) |
| 34 | 27 33 | sstrd | ⊢ ( 𝑦 ∈ ( 𝒫 ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ∩ Fin ) → 𝑦 ⊆ Fin ) |
| 35 | unifi | ⊢ ( ( 𝑦 ∈ Fin ∧ 𝑦 ⊆ Fin ) → ∪ 𝑦 ∈ Fin ) | |
| 36 | 25 34 35 | syl2anc | ⊢ ( 𝑦 ∈ ( 𝒫 ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ∩ Fin ) → ∪ 𝑦 ∈ Fin ) |
| 37 | eleq1 | ⊢ ( 𝐴 = ∪ 𝑦 → ( 𝐴 ∈ Fin ↔ ∪ 𝑦 ∈ Fin ) ) | |
| 38 | 36 37 | syl5ibrcom | ⊢ ( 𝑦 ∈ ( 𝒫 ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ∩ Fin ) → ( 𝐴 = ∪ 𝑦 → 𝐴 ∈ Fin ) ) |
| 39 | 38 | rexlimiv | ⊢ ( ∃ 𝑦 ∈ ( 𝒫 ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ∩ Fin ) 𝐴 = ∪ 𝑦 → 𝐴 ∈ Fin ) |
| 40 | 24 39 | syl | ⊢ ( 𝒫 𝐴 ∈ Comp → 𝐴 ∈ Fin ) |
| 41 | 6 40 | impbii | ⊢ ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Comp ) |