This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013) (Revised by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mpoeq123 | ⊢ ( ( 𝐴 = 𝐷 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) ) → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐷 , 𝑦 ∈ 𝐸 ↦ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | ⊢ Ⅎ 𝑥 𝐴 = 𝐷 | |
| 2 | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) | |
| 3 | 1 2 | nfan | ⊢ Ⅎ 𝑥 ( 𝐴 = 𝐷 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) ) |
| 4 | nfv | ⊢ Ⅎ 𝑦 𝐴 = 𝐷 | |
| 5 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 6 | nfv | ⊢ Ⅎ 𝑦 𝐵 = 𝐸 | |
| 7 | nfra1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 | |
| 8 | 6 7 | nfan | ⊢ Ⅎ 𝑦 ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) |
| 9 | 5 8 | nfralw | ⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) |
| 10 | 4 9 | nfan | ⊢ Ⅎ 𝑦 ( 𝐴 = 𝐷 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) ) |
| 11 | nfv | ⊢ Ⅎ 𝑧 ( 𝐴 = 𝐷 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) ) | |
| 12 | rsp | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) → ( 𝑥 ∈ 𝐴 → ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) ) ) | |
| 13 | rsp | ⊢ ( ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 → ( 𝑦 ∈ 𝐵 → 𝐶 = 𝐹 ) ) | |
| 14 | eqeq2 | ⊢ ( 𝐶 = 𝐹 → ( 𝑧 = 𝐶 ↔ 𝑧 = 𝐹 ) ) | |
| 15 | 13 14 | syl6 | ⊢ ( ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 → ( 𝑦 ∈ 𝐵 → ( 𝑧 = 𝐶 ↔ 𝑧 = 𝐹 ) ) ) |
| 16 | 15 | pm5.32d | ⊢ ( ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 = 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑧 = 𝐹 ) ) ) |
| 17 | eleq2 | ⊢ ( 𝐵 = 𝐸 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐸 ) ) | |
| 18 | 17 | anbi1d | ⊢ ( 𝐵 = 𝐸 → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 = 𝐹 ) ↔ ( 𝑦 ∈ 𝐸 ∧ 𝑧 = 𝐹 ) ) ) |
| 19 | 16 18 | sylan9bbr | ⊢ ( ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 = 𝐶 ) ↔ ( 𝑦 ∈ 𝐸 ∧ 𝑧 = 𝐹 ) ) ) |
| 20 | 12 19 | syl6 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) → ( 𝑥 ∈ 𝐴 → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 = 𝐶 ) ↔ ( 𝑦 ∈ 𝐸 ∧ 𝑧 = 𝐹 ) ) ) ) |
| 21 | 20 | pm5.32d | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) → ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 = 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐸 ∧ 𝑧 = 𝐹 ) ) ) ) |
| 22 | eleq2 | ⊢ ( 𝐴 = 𝐷 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐷 ) ) | |
| 23 | 22 | anbi1d | ⊢ ( 𝐴 = 𝐷 → ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐸 ∧ 𝑧 = 𝐹 ) ) ↔ ( 𝑥 ∈ 𝐷 ∧ ( 𝑦 ∈ 𝐸 ∧ 𝑧 = 𝐹 ) ) ) ) |
| 24 | 21 23 | sylan9bbr | ⊢ ( ( 𝐴 = 𝐷 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) ) → ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 = 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐷 ∧ ( 𝑦 ∈ 𝐸 ∧ 𝑧 = 𝐹 ) ) ) ) |
| 25 | anass | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 = 𝐶 ) ) ) | |
| 26 | anass | ⊢ ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 = 𝐹 ) ↔ ( 𝑥 ∈ 𝐷 ∧ ( 𝑦 ∈ 𝐸 ∧ 𝑧 = 𝐹 ) ) ) | |
| 27 | 24 25 26 | 3bitr4g | ⊢ ( ( 𝐴 = 𝐷 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ↔ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 = 𝐹 ) ) ) |
| 28 | 3 10 11 27 | oprabbid | ⊢ ( ( 𝐴 = 𝐷 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) ) → { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 = 𝐹 ) } ) |
| 29 | df-mpo | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } | |
| 30 | df-mpo | ⊢ ( 𝑥 ∈ 𝐷 , 𝑦 ∈ 𝐸 ↦ 𝐹 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 = 𝐹 ) } | |
| 31 | 28 29 30 | 3eqtr4g | ⊢ ( ( 𝐴 = 𝐷 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) ) → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐷 , 𝑦 ∈ 𝐸 ↦ 𝐹 ) ) |