This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " A is Lebesgue-measurable". A set is measurable if it splits every other set x in a "nice" way, that is, if the measure of the pieces x i^i A and x \ A sum up to the measure of x (assuming that the measure of x is a real number, so that this addition makes sense). (Contributed by Mario Carneiro, 17-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ismbl | ⊢ ( 𝐴 ∈ dom vol ↔ ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 ∩ 𝑦 ) = ( 𝑥 ∩ 𝐴 ) ) | |
| 2 | 1 | fveq2d | ⊢ ( 𝑦 = 𝐴 → ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) = ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) ) |
| 3 | difeq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 ∖ 𝑦 ) = ( 𝑥 ∖ 𝐴 ) ) | |
| 4 | 3 | fveq2d | ⊢ ( 𝑦 = 𝐴 → ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) = ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) |
| 5 | 2 4 | oveq12d | ⊢ ( 𝑦 = 𝐴 → ( ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) |
| 6 | 5 | eqeq2d | ⊢ ( 𝑦 = 𝐴 → ( ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) ) ↔ ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ) |
| 7 | 6 | ralbidv | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ) |
| 8 | df-vol | ⊢ vol = ( vol* ↾ { 𝑦 ∣ ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) ) } ) | |
| 9 | 8 | dmeqi | ⊢ dom vol = dom ( vol* ↾ { 𝑦 ∣ ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) ) } ) |
| 10 | dmres | ⊢ dom ( vol* ↾ { 𝑦 ∣ ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) ) } ) = ( { 𝑦 ∣ ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) ) } ∩ dom vol* ) | |
| 11 | ovolf | ⊢ vol* : 𝒫 ℝ ⟶ ( 0 [,] +∞ ) | |
| 12 | 11 | fdmi | ⊢ dom vol* = 𝒫 ℝ |
| 13 | 12 | ineq2i | ⊢ ( { 𝑦 ∣ ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) ) } ∩ dom vol* ) = ( { 𝑦 ∣ ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) ) } ∩ 𝒫 ℝ ) |
| 14 | 9 10 13 | 3eqtri | ⊢ dom vol = ( { 𝑦 ∣ ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) ) } ∩ 𝒫 ℝ ) |
| 15 | dfrab2 | ⊢ { 𝑦 ∈ 𝒫 ℝ ∣ ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) ) } = ( { 𝑦 ∣ ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) ) } ∩ 𝒫 ℝ ) | |
| 16 | 14 15 | eqtr4i | ⊢ dom vol = { 𝑦 ∈ 𝒫 ℝ ∣ ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝑦 ) ) ) } |
| 17 | 7 16 | elrab2 | ⊢ ( 𝐴 ∈ dom vol ↔ ( 𝐴 ∈ 𝒫 ℝ ∧ ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ) |
| 18 | reex | ⊢ ℝ ∈ V | |
| 19 | 18 | elpw2 | ⊢ ( 𝐴 ∈ 𝒫 ℝ ↔ 𝐴 ⊆ ℝ ) |
| 20 | ffn | ⊢ ( vol* : 𝒫 ℝ ⟶ ( 0 [,] +∞ ) → vol* Fn 𝒫 ℝ ) | |
| 21 | elpreima | ⊢ ( vol* Fn 𝒫 ℝ → ( 𝑥 ∈ ( ◡ vol* “ ℝ ) ↔ ( 𝑥 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) ) | |
| 22 | 11 20 21 | mp2b | ⊢ ( 𝑥 ∈ ( ◡ vol* “ ℝ ) ↔ ( 𝑥 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) |
| 23 | 22 | imbi1i | ⊢ ( ( 𝑥 ∈ ( ◡ vol* “ ℝ ) → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ↔ ( ( 𝑥 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ) |
| 24 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ↔ ( 𝑥 ∈ 𝒫 ℝ → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ) ) | |
| 25 | 23 24 | bitri | ⊢ ( ( 𝑥 ∈ ( ◡ vol* “ ℝ ) → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ↔ ( 𝑥 ∈ 𝒫 ℝ → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ) ) |
| 26 | 25 | ralbii2 | ⊢ ( ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ↔ ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ) |
| 27 | 19 26 | anbi12i | ⊢ ( ( 𝐴 ∈ 𝒫 ℝ ∧ ∀ 𝑥 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ↔ ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ) ) |
| 28 | 17 27 | bitri | ⊢ ( 𝐴 ∈ dom vol ↔ ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ) ) |