This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for voliun . (Contributed by Mario Carneiro, 20-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | voliunlem.3 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ dom vol ) | |
| voliunlem.5 | ⊢ ( 𝜑 → Disj 𝑖 ∈ ℕ ( 𝐹 ‘ 𝑖 ) ) | ||
| voliunlem.6 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) | ||
| voliunlem3.1 | ⊢ 𝑆 = seq 1 ( + , 𝐺 ) | ||
| voliunlem3.2 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) ) | ||
| voliunlem3.4 | ⊢ ( 𝜑 → ∀ 𝑖 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ ℝ ) | ||
| Assertion | voliunlem3 | ⊢ ( 𝜑 → ( vol ‘ ∪ ran 𝐹 ) = sup ( ran 𝑆 , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | voliunlem.3 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ dom vol ) | |
| 2 | voliunlem.5 | ⊢ ( 𝜑 → Disj 𝑖 ∈ ℕ ( 𝐹 ‘ 𝑖 ) ) | |
| 3 | voliunlem.6 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) | |
| 4 | voliunlem3.1 | ⊢ 𝑆 = seq 1 ( + , 𝐺 ) | |
| 5 | voliunlem3.2 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) ) | |
| 6 | voliunlem3.4 | ⊢ ( 𝜑 → ∀ 𝑖 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ ℝ ) | |
| 7 | 1 2 3 | voliunlem2 | ⊢ ( 𝜑 → ∪ ran 𝐹 ∈ dom vol ) |
| 8 | mblvol | ⊢ ( ∪ ran 𝐹 ∈ dom vol → ( vol ‘ ∪ ran 𝐹 ) = ( vol* ‘ ∪ ran 𝐹 ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝜑 → ( vol ‘ ∪ ran 𝐹 ) = ( vol* ‘ ∪ ran 𝐹 ) ) |
| 10 | 1 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ dom vol ) |
| 11 | mblss | ⊢ ( 𝑥 ∈ dom vol → 𝑥 ⊆ ℝ ) | |
| 12 | reex | ⊢ ℝ ∈ V | |
| 13 | 12 | elpw2 | ⊢ ( 𝑥 ∈ 𝒫 ℝ ↔ 𝑥 ⊆ ℝ ) |
| 14 | 11 13 | sylibr | ⊢ ( 𝑥 ∈ dom vol → 𝑥 ∈ 𝒫 ℝ ) |
| 15 | 14 | ssriv | ⊢ dom vol ⊆ 𝒫 ℝ |
| 16 | 10 15 | sstrdi | ⊢ ( 𝜑 → ran 𝐹 ⊆ 𝒫 ℝ ) |
| 17 | sspwuni | ⊢ ( ran 𝐹 ⊆ 𝒫 ℝ ↔ ∪ ran 𝐹 ⊆ ℝ ) | |
| 18 | 16 17 | sylib | ⊢ ( 𝜑 → ∪ ran 𝐹 ⊆ ℝ ) |
| 19 | ovolcl | ⊢ ( ∪ ran 𝐹 ⊆ ℝ → ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ* ) | |
| 20 | 18 19 | syl | ⊢ ( 𝜑 → ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ* ) |
| 21 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 22 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 23 | 2fveq3 | ⊢ ( 𝑛 = 𝑘 → ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) = ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 24 | fvex | ⊢ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ V | |
| 25 | 23 5 24 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( 𝐺 ‘ 𝑘 ) = ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 26 | 25 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) = ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 27 | 2fveq3 | ⊢ ( 𝑖 = 𝑘 → ( vol ‘ ( 𝐹 ‘ 𝑖 ) ) = ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 28 | 27 | eleq1d | ⊢ ( 𝑖 = 𝑘 → ( ( vol ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ ℝ ↔ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) |
| 29 | 28 | rspccva | ⊢ ( ( ∀ 𝑖 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 30 | 6 29 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 31 | 26 30 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 32 | 21 22 31 | serfre | ⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) : ℕ ⟶ ℝ ) |
| 33 | 4 | feq1i | ⊢ ( 𝑆 : ℕ ⟶ ℝ ↔ seq 1 ( + , 𝐺 ) : ℕ ⟶ ℝ ) |
| 34 | 32 33 | sylibr | ⊢ ( 𝜑 → 𝑆 : ℕ ⟶ ℝ ) |
| 35 | 34 | frnd | ⊢ ( 𝜑 → ran 𝑆 ⊆ ℝ ) |
| 36 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 37 | 35 36 | sstrdi | ⊢ ( 𝜑 → ran 𝑆 ⊆ ℝ* ) |
| 38 | supxrcl | ⊢ ( ran 𝑆 ⊆ ℝ* → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) | |
| 39 | 37 38 | syl | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
| 40 | eqid | ⊢ seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | |
| 41 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) | |
| 42 | 1 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ dom vol ) |
| 43 | mblss | ⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ dom vol → ( 𝐹 ‘ 𝑛 ) ⊆ ℝ ) | |
| 44 | 42 43 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ⊆ ℝ ) |
| 45 | mblvol | ⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ dom vol → ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) = ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) | |
| 46 | 42 45 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) = ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
| 47 | 2fveq3 | ⊢ ( 𝑖 = 𝑛 → ( vol ‘ ( 𝐹 ‘ 𝑖 ) ) = ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) ) | |
| 48 | 47 | eleq1d | ⊢ ( 𝑖 = 𝑛 → ( ( vol ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ ℝ ↔ ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) ) |
| 49 | 48 | rspccva | ⊢ ( ( ∀ 𝑖 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
| 50 | 6 49 | sylan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
| 51 | 46 50 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
| 52 | 40 41 44 51 | ovoliun | ⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ) ≤ sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) , ℝ* , < ) ) |
| 53 | 1 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ℕ ) |
| 54 | fniunfv | ⊢ ( 𝐹 Fn ℕ → ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ∪ ran 𝐹 ) | |
| 55 | 53 54 | syl | ⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ∪ ran 𝐹 ) |
| 56 | 55 | fveq2d | ⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ) = ( vol* ‘ ∪ ran 𝐹 ) ) |
| 57 | 46 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 58 | 5 57 | eqtrid | ⊢ ( 𝜑 → 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 59 | 58 | seqeq3d | ⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
| 60 | 4 59 | eqtr2id | ⊢ ( 𝜑 → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) = 𝑆 ) |
| 61 | 60 | rneqd | ⊢ ( 𝜑 → ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) = ran 𝑆 ) |
| 62 | 61 | supeq1d | ⊢ ( 𝜑 → sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) , ℝ* , < ) = sup ( ran 𝑆 , ℝ* , < ) ) |
| 63 | 52 56 62 | 3brtr3d | ⊢ ( 𝜑 → ( vol* ‘ ∪ ran 𝐹 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 64 | ovolge0 | ⊢ ( ∪ ran 𝐹 ⊆ ℝ → 0 ≤ ( vol* ‘ ∪ ran 𝐹 ) ) | |
| 65 | 18 64 | syl | ⊢ ( 𝜑 → 0 ≤ ( vol* ‘ ∪ ran 𝐹 ) ) |
| 66 | mnflt0 | ⊢ -∞ < 0 | |
| 67 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 68 | 0xr | ⊢ 0 ∈ ℝ* | |
| 69 | xrltletr | ⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ* ) → ( ( -∞ < 0 ∧ 0 ≤ ( vol* ‘ ∪ ran 𝐹 ) ) → -∞ < ( vol* ‘ ∪ ran 𝐹 ) ) ) | |
| 70 | 67 68 69 | mp3an12 | ⊢ ( ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ* → ( ( -∞ < 0 ∧ 0 ≤ ( vol* ‘ ∪ ran 𝐹 ) ) → -∞ < ( vol* ‘ ∪ ran 𝐹 ) ) ) |
| 71 | 66 70 | mpani | ⊢ ( ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ* → ( 0 ≤ ( vol* ‘ ∪ ran 𝐹 ) → -∞ < ( vol* ‘ ∪ ran 𝐹 ) ) ) |
| 72 | 20 65 71 | sylc | ⊢ ( 𝜑 → -∞ < ( vol* ‘ ∪ ran 𝐹 ) ) |
| 73 | xrrebnd | ⊢ ( ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ* → ( ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ ↔ ( -∞ < ( vol* ‘ ∪ ran 𝐹 ) ∧ ( vol* ‘ ∪ ran 𝐹 ) < +∞ ) ) ) | |
| 74 | 20 73 | syl | ⊢ ( 𝜑 → ( ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ ↔ ( -∞ < ( vol* ‘ ∪ ran 𝐹 ) ∧ ( vol* ‘ ∪ ran 𝐹 ) < +∞ ) ) ) |
| 75 | 12 | elpw2 | ⊢ ( ∪ ran 𝐹 ∈ 𝒫 ℝ ↔ ∪ ran 𝐹 ⊆ ℝ ) |
| 76 | 18 75 | sylibr | ⊢ ( 𝜑 → ∪ ran 𝐹 ∈ 𝒫 ℝ ) |
| 77 | simpl | ⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) → 𝑥 = ∪ ran 𝐹 ) | |
| 78 | 77 | sseq1d | ⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) → ( 𝑥 ⊆ ℝ ↔ ∪ ran 𝐹 ⊆ ℝ ) ) |
| 79 | 77 | fveq2d | ⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) → ( vol* ‘ 𝑥 ) = ( vol* ‘ ∪ ran 𝐹 ) ) |
| 80 | 79 | eleq1d | ⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) → ( ( vol* ‘ 𝑥 ) ∈ ℝ ↔ ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ ) ) |
| 81 | simpll | ⊢ ( ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) ∧ 𝑛 ∈ ℕ ) → 𝑥 = ∪ ran 𝐹 ) | |
| 82 | 81 | ineq1d | ⊢ ( ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) = ( ∪ ran 𝐹 ∩ ( 𝐹 ‘ 𝑛 ) ) ) |
| 83 | fnfvelrn | ⊢ ( ( 𝐹 Fn ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ran 𝐹 ) | |
| 84 | 53 83 | sylan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ran 𝐹 ) |
| 85 | elssuni | ⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ ran 𝐹 → ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ) | |
| 86 | 84 85 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ) |
| 87 | 86 | adantll | ⊢ ( ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ) |
| 88 | sseqin2 | ⊢ ( ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ↔ ( ∪ ran 𝐹 ∩ ( 𝐹 ‘ 𝑛 ) ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 89 | 87 88 | sylib | ⊢ ( ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) ∧ 𝑛 ∈ ℕ ) → ( ∪ ran 𝐹 ∩ ( 𝐹 ‘ 𝑛 ) ) = ( 𝐹 ‘ 𝑛 ) ) |
| 90 | 82 89 | eqtrd | ⊢ ( ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) = ( 𝐹 ‘ 𝑛 ) ) |
| 91 | 90 | fveq2d | ⊢ ( ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
| 92 | 46 | adantll | ⊢ ( ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) = ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
| 93 | 91 92 | eqtr4d | ⊢ ( ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
| 94 | 93 | mpteq2dva | ⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) → ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 95 | 94 | adantrr | ⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 96 | 95 3 5 | 3eqtr4g | ⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → 𝐻 = 𝐺 ) |
| 97 | 96 | seqeq3d | ⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → seq 1 ( + , 𝐻 ) = seq 1 ( + , 𝐺 ) ) |
| 98 | 97 4 | eqtr4di | ⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → seq 1 ( + , 𝐻 ) = 𝑆 ) |
| 99 | 98 | fveq1d | ⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) = ( 𝑆 ‘ 𝑘 ) ) |
| 100 | difeq1 | ⊢ ( 𝑥 = ∪ ran 𝐹 → ( 𝑥 ∖ ∪ ran 𝐹 ) = ( ∪ ran 𝐹 ∖ ∪ ran 𝐹 ) ) | |
| 101 | difid | ⊢ ( ∪ ran 𝐹 ∖ ∪ ran 𝐹 ) = ∅ | |
| 102 | 100 101 | eqtrdi | ⊢ ( 𝑥 = ∪ ran 𝐹 → ( 𝑥 ∖ ∪ ran 𝐹 ) = ∅ ) |
| 103 | 102 | fveq2d | ⊢ ( 𝑥 = ∪ ran 𝐹 → ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) = ( vol* ‘ ∅ ) ) |
| 104 | ovol0 | ⊢ ( vol* ‘ ∅ ) = 0 | |
| 105 | 103 104 | eqtrdi | ⊢ ( 𝑥 = ∪ ran 𝐹 → ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) = 0 ) |
| 106 | 105 | adantr | ⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) = 0 ) |
| 107 | 99 106 | oveq12d | ⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) = ( ( 𝑆 ‘ 𝑘 ) + 0 ) ) |
| 108 | 34 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) ∈ ℝ ) |
| 109 | 108 | adantl | ⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → ( 𝑆 ‘ 𝑘 ) ∈ ℝ ) |
| 110 | 109 | recnd | ⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → ( 𝑆 ‘ 𝑘 ) ∈ ℂ ) |
| 111 | 110 | addridd | ⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑆 ‘ 𝑘 ) + 0 ) = ( 𝑆 ‘ 𝑘 ) ) |
| 112 | 107 111 | eqtrd | ⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) = ( 𝑆 ‘ 𝑘 ) ) |
| 113 | fveq2 | ⊢ ( 𝑥 = ∪ ran 𝐹 → ( vol* ‘ 𝑥 ) = ( vol* ‘ ∪ ran 𝐹 ) ) | |
| 114 | 113 | adantr | ⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → ( vol* ‘ 𝑥 ) = ( vol* ‘ ∪ ran 𝐹 ) ) |
| 115 | 112 114 | breq12d | ⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → ( ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ↔ ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) |
| 116 | 115 | expr | ⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) → ( 𝑘 ∈ ℕ → ( ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ↔ ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) ) |
| 117 | 116 | pm5.74d | ⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) → ( ( 𝑘 ∈ ℕ → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ↔ ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) ) |
| 118 | 80 117 | imbi12d | ⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) → ( ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) ↔ ( ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) ) ) |
| 119 | 78 118 | imbi12d | ⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) → ( ( 𝑥 ⊆ ℝ → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) ) ↔ ( ∪ ran 𝐹 ⊆ ℝ → ( ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) ) ) ) |
| 120 | 119 | pm5.74da | ⊢ ( 𝑥 = ∪ ran 𝐹 → ( ( 𝜑 → ( 𝑥 ⊆ ℝ → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) ) ) ↔ ( 𝜑 → ( ∪ ran 𝐹 ⊆ ℝ → ( ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) ) ) ) ) |
| 121 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → 𝐹 : ℕ ⟶ dom vol ) |
| 122 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → Disj 𝑖 ∈ ℕ ( 𝐹 ‘ 𝑖 ) ) |
| 123 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → 𝑥 ⊆ ℝ ) | |
| 124 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ 𝑥 ) ∈ ℝ ) | |
| 125 | 121 122 3 123 124 | voliunlem1 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) |
| 126 | 125 | 3exp1 | ⊢ ( 𝜑 → ( 𝑥 ⊆ ℝ → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) ) ) |
| 127 | 120 126 | vtoclg | ⊢ ( ∪ ran 𝐹 ∈ 𝒫 ℝ → ( 𝜑 → ( ∪ ran 𝐹 ⊆ ℝ → ( ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) ) ) ) |
| 128 | 76 127 | mpcom | ⊢ ( 𝜑 → ( ∪ ran 𝐹 ⊆ ℝ → ( ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) ) ) |
| 129 | 18 128 | mpd | ⊢ ( 𝜑 → ( ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) ) |
| 130 | 74 129 | sylbird | ⊢ ( 𝜑 → ( ( -∞ < ( vol* ‘ ∪ ran 𝐹 ) ∧ ( vol* ‘ ∪ ran 𝐹 ) < +∞ ) → ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) ) |
| 131 | 72 130 | mpand | ⊢ ( 𝜑 → ( ( vol* ‘ ∪ ran 𝐹 ) < +∞ → ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) ) |
| 132 | nltpnft | ⊢ ( ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ* → ( ( vol* ‘ ∪ ran 𝐹 ) = +∞ ↔ ¬ ( vol* ‘ ∪ ran 𝐹 ) < +∞ ) ) | |
| 133 | 20 132 | syl | ⊢ ( 𝜑 → ( ( vol* ‘ ∪ ran 𝐹 ) = +∞ ↔ ¬ ( vol* ‘ ∪ ran 𝐹 ) < +∞ ) ) |
| 134 | rexr | ⊢ ( ( 𝑆 ‘ 𝑘 ) ∈ ℝ → ( 𝑆 ‘ 𝑘 ) ∈ ℝ* ) | |
| 135 | pnfge | ⊢ ( ( 𝑆 ‘ 𝑘 ) ∈ ℝ* → ( 𝑆 ‘ 𝑘 ) ≤ +∞ ) | |
| 136 | 108 134 135 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) ≤ +∞ ) |
| 137 | 136 | ex | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ +∞ ) ) |
| 138 | breq2 | ⊢ ( ( vol* ‘ ∪ ran 𝐹 ) = +∞ → ( ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ↔ ( 𝑆 ‘ 𝑘 ) ≤ +∞ ) ) | |
| 139 | 138 | imbi2d | ⊢ ( ( vol* ‘ ∪ ran 𝐹 ) = +∞ → ( ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ↔ ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ +∞ ) ) ) |
| 140 | 137 139 | syl5ibrcom | ⊢ ( 𝜑 → ( ( vol* ‘ ∪ ran 𝐹 ) = +∞ → ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) ) |
| 141 | 133 140 | sylbird | ⊢ ( 𝜑 → ( ¬ ( vol* ‘ ∪ ran 𝐹 ) < +∞ → ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) ) |
| 142 | 131 141 | pm2.61d | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) |
| 143 | 142 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) |
| 144 | 34 | ffnd | ⊢ ( 𝜑 → 𝑆 Fn ℕ ) |
| 145 | breq1 | ⊢ ( 𝑧 = ( 𝑆 ‘ 𝑘 ) → ( 𝑧 ≤ ( vol* ‘ ∪ ran 𝐹 ) ↔ ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) | |
| 146 | 145 | ralrn | ⊢ ( 𝑆 Fn ℕ → ( ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ ( vol* ‘ ∪ ran 𝐹 ) ↔ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) |
| 147 | 144 146 | syl | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ ( vol* ‘ ∪ ran 𝐹 ) ↔ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) |
| 148 | 143 147 | mpbird | ⊢ ( 𝜑 → ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ ( vol* ‘ ∪ ran 𝐹 ) ) |
| 149 | supxrleub | ⊢ ( ( ran 𝑆 ⊆ ℝ* ∧ ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ* ) → ( sup ( ran 𝑆 , ℝ* , < ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ↔ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) | |
| 150 | 37 20 149 | syl2anc | ⊢ ( 𝜑 → ( sup ( ran 𝑆 , ℝ* , < ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ↔ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) |
| 151 | 148 150 | mpbird | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) |
| 152 | 20 39 63 151 | xrletrid | ⊢ ( 𝜑 → ( vol* ‘ ∪ ran 𝐹 ) = sup ( ran 𝑆 , ℝ* , < ) ) |
| 153 | 9 152 | eqtrd | ⊢ ( 𝜑 → ( vol ‘ ∪ ran 𝐹 ) = sup ( ran 𝑆 , ℝ* , < ) ) |