This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for voliun . (Contributed by Mario Carneiro, 20-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | voliunlem.3 | |- ( ph -> F : NN --> dom vol ) |
|
| voliunlem.5 | |- ( ph -> Disj_ i e. NN ( F ` i ) ) |
||
| voliunlem.6 | |- H = ( n e. NN |-> ( vol* ` ( x i^i ( F ` n ) ) ) ) |
||
| Assertion | voliunlem2 | |- ( ph -> U. ran F e. dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | voliunlem.3 | |- ( ph -> F : NN --> dom vol ) |
|
| 2 | voliunlem.5 | |- ( ph -> Disj_ i e. NN ( F ` i ) ) |
|
| 3 | voliunlem.6 | |- H = ( n e. NN |-> ( vol* ` ( x i^i ( F ` n ) ) ) ) |
|
| 4 | 1 | frnd | |- ( ph -> ran F C_ dom vol ) |
| 5 | mblss | |- ( x e. dom vol -> x C_ RR ) |
|
| 6 | velpw | |- ( x e. ~P RR <-> x C_ RR ) |
|
| 7 | 5 6 | sylibr | |- ( x e. dom vol -> x e. ~P RR ) |
| 8 | 7 | ssriv | |- dom vol C_ ~P RR |
| 9 | 4 8 | sstrdi | |- ( ph -> ran F C_ ~P RR ) |
| 10 | sspwuni | |- ( ran F C_ ~P RR <-> U. ran F C_ RR ) |
|
| 11 | 9 10 | sylib | |- ( ph -> U. ran F C_ RR ) |
| 12 | elpwi | |- ( x e. ~P RR -> x C_ RR ) |
|
| 13 | inundif | |- ( ( x i^i U. ran F ) u. ( x \ U. ran F ) ) = x |
|
| 14 | 13 | fveq2i | |- ( vol* ` ( ( x i^i U. ran F ) u. ( x \ U. ran F ) ) ) = ( vol* ` x ) |
| 15 | inss1 | |- ( x i^i U. ran F ) C_ x |
|
| 16 | simp2 | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> x C_ RR ) |
|
| 17 | 15 16 | sstrid | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( x i^i U. ran F ) C_ RR ) |
| 18 | ovolsscl | |- ( ( ( x i^i U. ran F ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i U. ran F ) ) e. RR ) |
|
| 19 | 15 18 | mp3an1 | |- ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i U. ran F ) ) e. RR ) |
| 20 | 19 | 3adant1 | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i U. ran F ) ) e. RR ) |
| 21 | difss | |- ( x \ U. ran F ) C_ x |
|
| 22 | 21 16 | sstrid | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( x \ U. ran F ) C_ RR ) |
| 23 | ovolsscl | |- ( ( ( x \ U. ran F ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ U. ran F ) ) e. RR ) |
|
| 24 | 21 23 | mp3an1 | |- ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ U. ran F ) ) e. RR ) |
| 25 | 24 | 3adant1 | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ U. ran F ) ) e. RR ) |
| 26 | ovolun | |- ( ( ( ( x i^i U. ran F ) C_ RR /\ ( vol* ` ( x i^i U. ran F ) ) e. RR ) /\ ( ( x \ U. ran F ) C_ RR /\ ( vol* ` ( x \ U. ran F ) ) e. RR ) ) -> ( vol* ` ( ( x i^i U. ran F ) u. ( x \ U. ran F ) ) ) <_ ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) ) |
|
| 27 | 17 20 22 25 26 | syl22anc | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( ( x i^i U. ran F ) u. ( x \ U. ran F ) ) ) <_ ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) ) |
| 28 | 14 27 | eqbrtrrid | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` x ) <_ ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) ) |
| 29 | 20 | rexrd | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i U. ran F ) ) e. RR* ) |
| 30 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 31 | 1zzd | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> 1 e. ZZ ) |
|
| 32 | fveq2 | |- ( n = k -> ( F ` n ) = ( F ` k ) ) |
|
| 33 | 32 | ineq2d | |- ( n = k -> ( x i^i ( F ` n ) ) = ( x i^i ( F ` k ) ) ) |
| 34 | 33 | fveq2d | |- ( n = k -> ( vol* ` ( x i^i ( F ` n ) ) ) = ( vol* ` ( x i^i ( F ` k ) ) ) ) |
| 35 | fvex | |- ( vol* ` ( x i^i ( F ` k ) ) ) e. _V |
|
| 36 | 34 3 35 | fvmpt | |- ( k e. NN -> ( H ` k ) = ( vol* ` ( x i^i ( F ` k ) ) ) ) |
| 37 | 36 | adantl | |- ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( H ` k ) = ( vol* ` ( x i^i ( F ` k ) ) ) ) |
| 38 | inss1 | |- ( x i^i ( F ` k ) ) C_ x |
|
| 39 | ovolsscl | |- ( ( ( x i^i ( F ` k ) ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i ( F ` k ) ) ) e. RR ) |
|
| 40 | 38 39 | mp3an1 | |- ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i ( F ` k ) ) ) e. RR ) |
| 41 | 40 | 3adant1 | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i ( F ` k ) ) ) e. RR ) |
| 42 | 41 | adantr | |- ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( vol* ` ( x i^i ( F ` k ) ) ) e. RR ) |
| 43 | 37 42 | eqeltrd | |- ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( H ` k ) e. RR ) |
| 44 | 30 31 43 | serfre | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> seq 1 ( + , H ) : NN --> RR ) |
| 45 | 44 | frnd | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ran seq 1 ( + , H ) C_ RR ) |
| 46 | ressxr | |- RR C_ RR* |
|
| 47 | 45 46 | sstrdi | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ran seq 1 ( + , H ) C_ RR* ) |
| 48 | supxrcl | |- ( ran seq 1 ( + , H ) C_ RR* -> sup ( ran seq 1 ( + , H ) , RR* , < ) e. RR* ) |
|
| 49 | 47 48 | syl | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> sup ( ran seq 1 ( + , H ) , RR* , < ) e. RR* ) |
| 50 | simp3 | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` x ) e. RR ) |
|
| 51 | 50 25 | resubcld | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) e. RR ) |
| 52 | 51 | rexrd | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) e. RR* ) |
| 53 | iunin2 | |- U_ n e. NN ( x i^i ( F ` n ) ) = ( x i^i U_ n e. NN ( F ` n ) ) |
|
| 54 | ffn | |- ( F : NN --> dom vol -> F Fn NN ) |
|
| 55 | fniunfv | |- ( F Fn NN -> U_ n e. NN ( F ` n ) = U. ran F ) |
|
| 56 | 1 54 55 | 3syl | |- ( ph -> U_ n e. NN ( F ` n ) = U. ran F ) |
| 57 | 56 | 3ad2ant1 | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> U_ n e. NN ( F ` n ) = U. ran F ) |
| 58 | 57 | ineq2d | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( x i^i U_ n e. NN ( F ` n ) ) = ( x i^i U. ran F ) ) |
| 59 | 53 58 | eqtrid | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> U_ n e. NN ( x i^i ( F ` n ) ) = ( x i^i U. ran F ) ) |
| 60 | 59 | fveq2d | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` U_ n e. NN ( x i^i ( F ` n ) ) ) = ( vol* ` ( x i^i U. ran F ) ) ) |
| 61 | eqid | |- seq 1 ( + , H ) = seq 1 ( + , H ) |
|
| 62 | inss1 | |- ( x i^i ( F ` n ) ) C_ x |
|
| 63 | 62 16 | sstrid | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( x i^i ( F ` n ) ) C_ RR ) |
| 64 | 63 | adantr | |- ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ n e. NN ) -> ( x i^i ( F ` n ) ) C_ RR ) |
| 65 | ovolsscl | |- ( ( ( x i^i ( F ` n ) ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i ( F ` n ) ) ) e. RR ) |
|
| 66 | 62 65 | mp3an1 | |- ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i ( F ` n ) ) ) e. RR ) |
| 67 | 66 | 3adant1 | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i ( F ` n ) ) ) e. RR ) |
| 68 | 67 | adantr | |- ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ n e. NN ) -> ( vol* ` ( x i^i ( F ` n ) ) ) e. RR ) |
| 69 | 61 3 64 68 | ovoliun | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` U_ n e. NN ( x i^i ( F ` n ) ) ) <_ sup ( ran seq 1 ( + , H ) , RR* , < ) ) |
| 70 | 60 69 | eqbrtrrd | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i U. ran F ) ) <_ sup ( ran seq 1 ( + , H ) , RR* , < ) ) |
| 71 | 1 | 3ad2ant1 | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> F : NN --> dom vol ) |
| 72 | 2 | 3ad2ant1 | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> Disj_ i e. NN ( F ` i ) ) |
| 73 | 71 72 3 16 50 | voliunlem1 | |- ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) ) |
| 74 | 44 | ffvelcdmda | |- ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( seq 1 ( + , H ) ` k ) e. RR ) |
| 75 | 25 | adantr | |- ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( vol* ` ( x \ U. ran F ) ) e. RR ) |
| 76 | simpl3 | |- ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( vol* ` x ) e. RR ) |
|
| 77 | leaddsub | |- ( ( ( seq 1 ( + , H ) ` k ) e. RR /\ ( vol* ` ( x \ U. ran F ) ) e. RR /\ ( vol* ` x ) e. RR ) -> ( ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) <-> ( seq 1 ( + , H ) ` k ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) ) |
|
| 78 | 74 75 76 77 | syl3anc | |- ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) <-> ( seq 1 ( + , H ) ` k ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) ) |
| 79 | 73 78 | mpbid | |- ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( seq 1 ( + , H ) ` k ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) |
| 80 | 79 | ralrimiva | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> A. k e. NN ( seq 1 ( + , H ) ` k ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) |
| 81 | ffn | |- ( seq 1 ( + , H ) : NN --> RR -> seq 1 ( + , H ) Fn NN ) |
|
| 82 | breq1 | |- ( z = ( seq 1 ( + , H ) ` k ) -> ( z <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) <-> ( seq 1 ( + , H ) ` k ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) ) |
|
| 83 | 82 | ralrn | |- ( seq 1 ( + , H ) Fn NN -> ( A. z e. ran seq 1 ( + , H ) z <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) <-> A. k e. NN ( seq 1 ( + , H ) ` k ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) ) |
| 84 | 44 81 83 | 3syl | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( A. z e. ran seq 1 ( + , H ) z <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) <-> A. k e. NN ( seq 1 ( + , H ) ` k ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) ) |
| 85 | 80 84 | mpbird | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> A. z e. ran seq 1 ( + , H ) z <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) |
| 86 | supxrleub | |- ( ( ran seq 1 ( + , H ) C_ RR* /\ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) e. RR* ) -> ( sup ( ran seq 1 ( + , H ) , RR* , < ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) <-> A. z e. ran seq 1 ( + , H ) z <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) ) |
|
| 87 | 47 52 86 | syl2anc | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( sup ( ran seq 1 ( + , H ) , RR* , < ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) <-> A. z e. ran seq 1 ( + , H ) z <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) ) |
| 88 | 85 87 | mpbird | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> sup ( ran seq 1 ( + , H ) , RR* , < ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) |
| 89 | 29 49 52 70 88 | xrletrd | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i U. ran F ) ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) |
| 90 | leaddsub | |- ( ( ( vol* ` ( x i^i U. ran F ) ) e. RR /\ ( vol* ` ( x \ U. ran F ) ) e. RR /\ ( vol* ` x ) e. RR ) -> ( ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) <-> ( vol* ` ( x i^i U. ran F ) ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) ) |
|
| 91 | 20 25 50 90 | syl3anc | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) <-> ( vol* ` ( x i^i U. ran F ) ) <_ ( ( vol* ` x ) - ( vol* ` ( x \ U. ran F ) ) ) ) ) |
| 92 | 89 91 | mpbird | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) ) |
| 93 | 20 25 | readdcld | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) e. RR ) |
| 94 | 50 93 | letri3d | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` x ) = ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) <-> ( ( vol* ` x ) <_ ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) /\ ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) ) ) ) |
| 95 | 28 92 94 | mpbir2and | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` x ) = ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) ) |
| 96 | 95 | 3expia | |- ( ( ph /\ x C_ RR ) -> ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) ) ) |
| 97 | 12 96 | sylan2 | |- ( ( ph /\ x e. ~P RR ) -> ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) ) ) |
| 98 | 97 | ralrimiva | |- ( ph -> A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) ) ) |
| 99 | ismbl | |- ( U. ran F e. dom vol <-> ( U. ran F C_ RR /\ A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i U. ran F ) ) + ( vol* ` ( x \ U. ran F ) ) ) ) ) ) |
|
| 100 | 11 98 99 | sylanbrc | |- ( ph -> U. ran F e. dom vol ) |