This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Lebesgue outer measure function is countably sub-additive. (This version is a little easier to read, but does not allow infinite values like ovoliun .) (Contributed by Mario Carneiro, 12-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovoliun.t | ⊢ 𝑇 = seq 1 ( + , 𝐺 ) | |
| ovoliun.g | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ 𝐴 ) ) | ||
| ovoliun.a | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ⊆ ℝ ) | ||
| ovoliun.v | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) | ||
| ovoliun2.t | ⊢ ( 𝜑 → 𝑇 ∈ dom ⇝ ) | ||
| Assertion | ovoliun2 | ⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ≤ Σ 𝑛 ∈ ℕ ( vol* ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovoliun.t | ⊢ 𝑇 = seq 1 ( + , 𝐺 ) | |
| 2 | ovoliun.g | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ 𝐴 ) ) | |
| 3 | ovoliun.a | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ⊆ ℝ ) | |
| 4 | ovoliun.v | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) | |
| 5 | ovoliun2.t | ⊢ ( 𝜑 → 𝑇 ∈ dom ⇝ ) | |
| 6 | 1 2 3 4 | ovoliun | ⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 7 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 8 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 9 | fvex | ⊢ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ V | |
| 10 | nfcv | ⊢ Ⅎ 𝑚 ( vol* ‘ 𝐴 ) | |
| 11 | nfcv | ⊢ Ⅎ 𝑛 vol* | |
| 12 | nfcsb1v | ⊢ Ⅎ 𝑛 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 | |
| 13 | 11 12 | nffv | ⊢ Ⅎ 𝑛 ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
| 14 | csbeq1a | ⊢ ( 𝑛 = 𝑚 → 𝐴 = ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) | |
| 15 | 14 | fveq2d | ⊢ ( 𝑛 = 𝑚 → ( vol* ‘ 𝐴 ) = ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 16 | 10 13 15 | cbvmpt | ⊢ ( 𝑛 ∈ ℕ ↦ ( vol* ‘ 𝐴 ) ) = ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 17 | 2 16 | eqtri | ⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 18 | 17 | fvmpt2 | ⊢ ( ( 𝑚 ∈ ℕ ∧ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ V ) → ( 𝐺 ‘ 𝑚 ) = ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 19 | 9 18 | mpan2 | ⊢ ( 𝑚 ∈ ℕ → ( 𝐺 ‘ 𝑚 ) = ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 20 | 19 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐺 ‘ 𝑚 ) = ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 21 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( vol* ‘ 𝐴 ) ∈ ℝ ) |
| 22 | 10 | nfel1 | ⊢ Ⅎ 𝑚 ( vol* ‘ 𝐴 ) ∈ ℝ |
| 23 | 13 | nfel1 | ⊢ Ⅎ 𝑛 ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ |
| 24 | 15 | eleq1d | ⊢ ( 𝑛 = 𝑚 → ( ( vol* ‘ 𝐴 ) ∈ ℝ ↔ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) ) |
| 25 | 22 23 24 | cbvralw | ⊢ ( ∀ 𝑛 ∈ ℕ ( vol* ‘ 𝐴 ) ∈ ℝ ↔ ∀ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 26 | 21 25 | sylib | ⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 27 | 26 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 28 | 20 27 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐺 ‘ 𝑚 ) ∈ ℝ ) |
| 29 | 7 8 28 | serfre | ⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) : ℕ ⟶ ℝ ) |
| 30 | 1 | feq1i | ⊢ ( 𝑇 : ℕ ⟶ ℝ ↔ seq 1 ( + , 𝐺 ) : ℕ ⟶ ℝ ) |
| 31 | 29 30 | sylibr | ⊢ ( 𝜑 → 𝑇 : ℕ ⟶ ℝ ) |
| 32 | 31 | frnd | ⊢ ( 𝜑 → ran 𝑇 ⊆ ℝ ) |
| 33 | 1nn | ⊢ 1 ∈ ℕ | |
| 34 | 31 | fdmd | ⊢ ( 𝜑 → dom 𝑇 = ℕ ) |
| 35 | 33 34 | eleqtrrid | ⊢ ( 𝜑 → 1 ∈ dom 𝑇 ) |
| 36 | 35 | ne0d | ⊢ ( 𝜑 → dom 𝑇 ≠ ∅ ) |
| 37 | dm0rn0 | ⊢ ( dom 𝑇 = ∅ ↔ ran 𝑇 = ∅ ) | |
| 38 | 37 | necon3bii | ⊢ ( dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅ ) |
| 39 | 36 38 | sylib | ⊢ ( 𝜑 → ran 𝑇 ≠ ∅ ) |
| 40 | 1 5 | eqeltrrid | ⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 41 | 7 8 20 27 40 | isumrecl | ⊢ ( 𝜑 → Σ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 42 | elfznn | ⊢ ( 𝑚 ∈ ( 1 ... 𝑘 ) → 𝑚 ∈ ℕ ) | |
| 43 | 42 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑘 ) ) → 𝑚 ∈ ℕ ) |
| 44 | 43 19 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑘 ) ) → ( 𝐺 ‘ 𝑚 ) = ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 45 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) | |
| 46 | 45 7 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 47 | simpl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝜑 ) | |
| 48 | 47 42 27 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑘 ) ) → ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 49 | 48 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑘 ) ) → ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℂ ) |
| 50 | 44 46 49 | fsumser | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑚 ∈ ( 1 ... 𝑘 ) ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) = ( seq 1 ( + , 𝐺 ) ‘ 𝑘 ) ) |
| 51 | 1 | fveq1i | ⊢ ( 𝑇 ‘ 𝑘 ) = ( seq 1 ( + , 𝐺 ) ‘ 𝑘 ) |
| 52 | 50 51 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑚 ∈ ( 1 ... 𝑘 ) ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) = ( 𝑇 ‘ 𝑘 ) ) |
| 53 | fzfid | ⊢ ( 𝜑 → ( 1 ... 𝑘 ) ∈ Fin ) | |
| 54 | fz1ssnn | ⊢ ( 1 ... 𝑘 ) ⊆ ℕ | |
| 55 | 54 | a1i | ⊢ ( 𝜑 → ( 1 ... 𝑘 ) ⊆ ℕ ) |
| 56 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ 𝐴 ⊆ ℝ ) |
| 57 | nfv | ⊢ Ⅎ 𝑚 𝐴 ⊆ ℝ | |
| 58 | nfcv | ⊢ Ⅎ 𝑛 ℝ | |
| 59 | 12 58 | nfss | ⊢ Ⅎ 𝑛 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ |
| 60 | 14 | sseq1d | ⊢ ( 𝑛 = 𝑚 → ( 𝐴 ⊆ ℝ ↔ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ ) ) |
| 61 | 57 59 60 | cbvralw | ⊢ ( ∀ 𝑛 ∈ ℕ 𝐴 ⊆ ℝ ↔ ∀ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ ) |
| 62 | 56 61 | sylib | ⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ ) |
| 63 | 62 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ ) |
| 64 | ovolge0 | ⊢ ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ → 0 ≤ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) | |
| 65 | 63 64 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 0 ≤ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 66 | 7 8 53 55 20 27 65 40 | isumless | ⊢ ( 𝜑 → Σ 𝑚 ∈ ( 1 ... 𝑘 ) ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ≤ Σ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 67 | 66 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑚 ∈ ( 1 ... 𝑘 ) ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ≤ Σ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 68 | 52 67 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑇 ‘ 𝑘 ) ≤ Σ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 69 | 68 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝑇 ‘ 𝑘 ) ≤ Σ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 70 | brralrspcev | ⊢ ( ( Σ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ∧ ∀ 𝑘 ∈ ℕ ( 𝑇 ‘ 𝑘 ) ≤ Σ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑇 ‘ 𝑘 ) ≤ 𝑥 ) | |
| 71 | 41 69 70 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑇 ‘ 𝑘 ) ≤ 𝑥 ) |
| 72 | 31 | ffnd | ⊢ ( 𝜑 → 𝑇 Fn ℕ ) |
| 73 | breq1 | ⊢ ( 𝑧 = ( 𝑇 ‘ 𝑘 ) → ( 𝑧 ≤ 𝑥 ↔ ( 𝑇 ‘ 𝑘 ) ≤ 𝑥 ) ) | |
| 74 | 73 | ralrn | ⊢ ( 𝑇 Fn ℕ → ( ∀ 𝑧 ∈ ran 𝑇 𝑧 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( 𝑇 ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 75 | 72 74 | syl | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran 𝑇 𝑧 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( 𝑇 ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 76 | 75 | rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑇 𝑧 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑇 ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 77 | 71 76 | mpbird | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑇 𝑧 ≤ 𝑥 ) |
| 78 | supxrre | ⊢ ( ( ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑇 𝑧 ≤ 𝑥 ) → sup ( ran 𝑇 , ℝ* , < ) = sup ( ran 𝑇 , ℝ , < ) ) | |
| 79 | 32 39 77 78 | syl3anc | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) = sup ( ran 𝑇 , ℝ , < ) ) |
| 80 | 7 1 8 20 27 65 71 | isumsup | ⊢ ( 𝜑 → Σ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) = sup ( ran 𝑇 , ℝ , < ) ) |
| 81 | 79 80 | eqtr4d | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) = Σ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 82 | 15 10 13 | cbvsum | ⊢ Σ 𝑛 ∈ ℕ ( vol* ‘ 𝐴 ) = Σ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
| 83 | 81 82 | eqtr4di | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) = Σ 𝑛 ∈ ℕ ( vol* ‘ 𝐴 ) ) |
| 84 | 6 83 | breqtrd | ⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ≤ Σ 𝑛 ∈ ℕ ( vol* ‘ 𝐴 ) ) |