This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two sequences converge in a filter iff the sequence of their ordered pairs converges. (Contributed by Mario Carneiro, 19-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | txflf.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| txflf.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| txflf.l | ⊢ ( 𝜑 → 𝐿 ∈ ( Fil ‘ 𝑍 ) ) | ||
| txflf.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝑋 ) | ||
| txflf.g | ⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ 𝑌 ) | ||
| txflf.h | ⊢ 𝐻 = ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) | ||
| Assertion | txflf | ⊢ ( 𝜑 → ( 〈 𝑅 , 𝑆 〉 ∈ ( ( ( 𝐽 ×t 𝐾 ) fLimf 𝐿 ) ‘ 𝐻 ) ↔ ( 𝑅 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ∧ 𝑆 ∈ ( ( 𝐾 fLimf 𝐿 ) ‘ 𝐺 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txflf.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | txflf.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 3 | txflf.l | ⊢ ( 𝜑 → 𝐿 ∈ ( Fil ‘ 𝑍 ) ) | |
| 4 | txflf.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝑋 ) | |
| 5 | txflf.g | ⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ 𝑌 ) | |
| 6 | txflf.h | ⊢ 𝐻 = ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) | |
| 7 | vex | ⊢ 𝑢 ∈ V | |
| 8 | vex | ⊢ 𝑣 ∈ V | |
| 9 | 7 8 | xpex | ⊢ ( 𝑢 × 𝑣 ) ∈ V |
| 10 | 9 | rgen2w | ⊢ ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( 𝑢 × 𝑣 ) ∈ V |
| 11 | eqid | ⊢ ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) = ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) | |
| 12 | eleq2 | ⊢ ( 𝑧 = ( 𝑢 × 𝑣 ) → ( 〈 𝑅 , 𝑆 〉 ∈ 𝑧 ↔ 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ) ) | |
| 13 | sseq2 | ⊢ ( 𝑧 = ( 𝑢 × 𝑣 ) → ( ( 𝐻 “ ℎ ) ⊆ 𝑧 ↔ ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ) | |
| 14 | 13 | rexbidv | ⊢ ( 𝑧 = ( 𝑢 × 𝑣 ) → ( ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ 𝑧 ↔ ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ) |
| 15 | 12 14 | imbi12d | ⊢ ( 𝑧 = ( 𝑢 × 𝑣 ) → ( ( 〈 𝑅 , 𝑆 〉 ∈ 𝑧 → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ 𝑧 ) ↔ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ) ) |
| 16 | 11 15 | ralrnmpo | ⊢ ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( 𝑢 × 𝑣 ) ∈ V → ( ∀ 𝑧 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑧 → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ 𝑧 ) ↔ ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ) ) |
| 17 | 10 16 | ax-mp | ⊢ ( ∀ 𝑧 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑧 → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ 𝑧 ) ↔ ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ) |
| 18 | opelxp | ⊢ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ↔ ( 𝑅 ∈ 𝑢 ∧ 𝑆 ∈ 𝑣 ) ) | |
| 19 | 18 | biancomi | ⊢ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ↔ ( 𝑆 ∈ 𝑣 ∧ 𝑅 ∈ 𝑢 ) ) |
| 20 | 19 | a1i | ⊢ ( 𝜑 → ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ↔ ( 𝑆 ∈ 𝑣 ∧ 𝑅 ∈ 𝑢 ) ) ) |
| 21 | r19.40 | ⊢ ( ∃ ℎ ∈ 𝐿 ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) → ( ∃ ℎ ∈ 𝐿 ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∃ ℎ ∈ 𝐿 ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) | |
| 22 | raleq | ⊢ ( ℎ = 𝑓 → ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ↔ ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ) ) | |
| 23 | 22 | cbvrexvw | ⊢ ( ∃ ℎ ∈ 𝐿 ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ↔ ∃ 𝑓 ∈ 𝐿 ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ) |
| 24 | raleq | ⊢ ( ℎ = 𝑔 → ( ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ↔ ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) | |
| 25 | 24 | cbvrexvw | ⊢ ( ∃ ℎ ∈ 𝐿 ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ↔ ∃ 𝑔 ∈ 𝐿 ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) |
| 26 | 23 25 | anbi12i | ⊢ ( ( ∃ ℎ ∈ 𝐿 ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∃ ℎ ∈ 𝐿 ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ↔ ( ∃ 𝑓 ∈ 𝐿 ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) |
| 27 | 21 26 | sylib | ⊢ ( ∃ ℎ ∈ 𝐿 ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) → ( ∃ 𝑓 ∈ 𝐿 ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) |
| 28 | reeanv | ⊢ ( ∃ 𝑓 ∈ 𝐿 ∃ 𝑔 ∈ 𝐿 ( ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ↔ ( ∃ 𝑓 ∈ 𝐿 ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) | |
| 29 | filin | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑍 ) ∧ 𝑓 ∈ 𝐿 ∧ 𝑔 ∈ 𝐿 ) → ( 𝑓 ∩ 𝑔 ) ∈ 𝐿 ) | |
| 30 | 29 | 3expb | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑍 ) ∧ ( 𝑓 ∈ 𝐿 ∧ 𝑔 ∈ 𝐿 ) ) → ( 𝑓 ∩ 𝑔 ) ∈ 𝐿 ) |
| 31 | 3 30 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐿 ∧ 𝑔 ∈ 𝐿 ) ) → ( 𝑓 ∩ 𝑔 ) ∈ 𝐿 ) |
| 32 | inss1 | ⊢ ( 𝑓 ∩ 𝑔 ) ⊆ 𝑓 | |
| 33 | ssralv | ⊢ ( ( 𝑓 ∩ 𝑔 ) ⊆ 𝑓 → ( ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 → ∀ 𝑛 ∈ ( 𝑓 ∩ 𝑔 ) ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ) ) | |
| 34 | 32 33 | ax-mp | ⊢ ( ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 → ∀ 𝑛 ∈ ( 𝑓 ∩ 𝑔 ) ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ) |
| 35 | inss2 | ⊢ ( 𝑓 ∩ 𝑔 ) ⊆ 𝑔 | |
| 36 | ssralv | ⊢ ( ( 𝑓 ∩ 𝑔 ) ⊆ 𝑔 → ( ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 → ∀ 𝑛 ∈ ( 𝑓 ∩ 𝑔 ) ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) | |
| 37 | 35 36 | ax-mp | ⊢ ( ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 → ∀ 𝑛 ∈ ( 𝑓 ∩ 𝑔 ) ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) |
| 38 | 34 37 | anim12i | ⊢ ( ( ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) → ( ∀ 𝑛 ∈ ( 𝑓 ∩ 𝑔 ) ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ( 𝑓 ∩ 𝑔 ) ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) |
| 39 | raleq | ⊢ ( ℎ = ( 𝑓 ∩ 𝑔 ) → ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ↔ ∀ 𝑛 ∈ ( 𝑓 ∩ 𝑔 ) ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ) ) | |
| 40 | raleq | ⊢ ( ℎ = ( 𝑓 ∩ 𝑔 ) → ( ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ↔ ∀ 𝑛 ∈ ( 𝑓 ∩ 𝑔 ) ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) | |
| 41 | 39 40 | anbi12d | ⊢ ( ℎ = ( 𝑓 ∩ 𝑔 ) → ( ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ↔ ( ∀ 𝑛 ∈ ( 𝑓 ∩ 𝑔 ) ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ( 𝑓 ∩ 𝑔 ) ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) ) |
| 42 | 41 | rspcev | ⊢ ( ( ( 𝑓 ∩ 𝑔 ) ∈ 𝐿 ∧ ( ∀ 𝑛 ∈ ( 𝑓 ∩ 𝑔 ) ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ( 𝑓 ∩ 𝑔 ) ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) → ∃ ℎ ∈ 𝐿 ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) |
| 43 | 31 38 42 | syl2an | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐿 ∧ 𝑔 ∈ 𝐿 ) ) ∧ ( ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) → ∃ ℎ ∈ 𝐿 ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) |
| 44 | 43 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐿 ∧ 𝑔 ∈ 𝐿 ) ) → ( ( ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) → ∃ ℎ ∈ 𝐿 ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) ) |
| 45 | 44 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑓 ∈ 𝐿 ∃ 𝑔 ∈ 𝐿 ( ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) → ∃ ℎ ∈ 𝐿 ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) ) |
| 46 | 28 45 | biimtrrid | ⊢ ( 𝜑 → ( ( ∃ 𝑓 ∈ 𝐿 ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) → ∃ ℎ ∈ 𝐿 ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) ) |
| 47 | 27 46 | impbid2 | ⊢ ( 𝜑 → ( ∃ ℎ ∈ 𝐿 ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ↔ ( ∃ 𝑓 ∈ 𝐿 ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) ) |
| 48 | df-ima | ⊢ ( 𝐻 “ ℎ ) = ran ( 𝐻 ↾ ℎ ) | |
| 49 | filelss | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑍 ) ∧ ℎ ∈ 𝐿 ) → ℎ ⊆ 𝑍 ) | |
| 50 | 3 49 | sylan | ⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐿 ) → ℎ ⊆ 𝑍 ) |
| 51 | 6 | reseq1i | ⊢ ( 𝐻 ↾ ℎ ) = ( ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ↾ ℎ ) |
| 52 | resmpt | ⊢ ( ℎ ⊆ 𝑍 → ( ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ↾ ℎ ) = ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ) | |
| 53 | 51 52 | eqtrid | ⊢ ( ℎ ⊆ 𝑍 → ( 𝐻 ↾ ℎ ) = ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ) |
| 54 | 50 53 | syl | ⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐿 ) → ( 𝐻 ↾ ℎ ) = ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ) |
| 55 | 54 | rneqd | ⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐿 ) → ran ( 𝐻 ↾ ℎ ) = ran ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ) |
| 56 | 48 55 | eqtrid | ⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐿 ) → ( 𝐻 “ ℎ ) = ran ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ) |
| 57 | 56 | sseq1d | ⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐿 ) → ( ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ↔ ran ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ⊆ ( 𝑢 × 𝑣 ) ) ) |
| 58 | opelxp | ⊢ ( 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ∈ ( 𝑢 × 𝑣 ) ↔ ( ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) | |
| 59 | 58 | ralbii | ⊢ ( ∀ 𝑛 ∈ ℎ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ∈ ( 𝑢 × 𝑣 ) ↔ ∀ 𝑛 ∈ ℎ ( ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) |
| 60 | eqid | ⊢ ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) = ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) | |
| 61 | 60 | fmpt | ⊢ ( ∀ 𝑛 ∈ ℎ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ∈ ( 𝑢 × 𝑣 ) ↔ ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) : ℎ ⟶ ( 𝑢 × 𝑣 ) ) |
| 62 | opex | ⊢ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ∈ V | |
| 63 | 62 60 | fnmpti | ⊢ ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) Fn ℎ |
| 64 | df-f | ⊢ ( ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) : ℎ ⟶ ( 𝑢 × 𝑣 ) ↔ ( ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) Fn ℎ ∧ ran ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ⊆ ( 𝑢 × 𝑣 ) ) ) | |
| 65 | 63 64 | mpbiran | ⊢ ( ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) : ℎ ⟶ ( 𝑢 × 𝑣 ) ↔ ran ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ⊆ ( 𝑢 × 𝑣 ) ) |
| 66 | 61 65 | bitri | ⊢ ( ∀ 𝑛 ∈ ℎ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ∈ ( 𝑢 × 𝑣 ) ↔ ran ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ⊆ ( 𝑢 × 𝑣 ) ) |
| 67 | r19.26 | ⊢ ( ∀ 𝑛 ∈ ℎ ( ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ↔ ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) | |
| 68 | 59 66 67 | 3bitr3i | ⊢ ( ran ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ⊆ ( 𝑢 × 𝑣 ) ↔ ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) |
| 69 | 57 68 | bitrdi | ⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐿 ) → ( ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ↔ ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) ) |
| 70 | 69 | rexbidva | ⊢ ( 𝜑 → ( ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ↔ ∃ ℎ ∈ 𝐿 ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) ) |
| 71 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐿 ) → 𝐹 : 𝑍 ⟶ 𝑋 ) |
| 72 | 71 | ffund | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐿 ) → Fun 𝐹 ) |
| 73 | filelss | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑍 ) ∧ 𝑓 ∈ 𝐿 ) → 𝑓 ⊆ 𝑍 ) | |
| 74 | 3 73 | sylan | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐿 ) → 𝑓 ⊆ 𝑍 ) |
| 75 | 71 | fdmd | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐿 ) → dom 𝐹 = 𝑍 ) |
| 76 | 74 75 | sseqtrrd | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐿 ) → 𝑓 ⊆ dom 𝐹 ) |
| 77 | funimass4 | ⊢ ( ( Fun 𝐹 ∧ 𝑓 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ↔ ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ) ) | |
| 78 | 72 76 77 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐿 ) → ( ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ↔ ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ) ) |
| 79 | 78 | rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ↔ ∃ 𝑓 ∈ 𝐿 ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ) ) |
| 80 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐿 ) → 𝐺 : 𝑍 ⟶ 𝑌 ) |
| 81 | 80 | ffund | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐿 ) → Fun 𝐺 ) |
| 82 | filelss | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑍 ) ∧ 𝑔 ∈ 𝐿 ) → 𝑔 ⊆ 𝑍 ) | |
| 83 | 3 82 | sylan | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐿 ) → 𝑔 ⊆ 𝑍 ) |
| 84 | 80 | fdmd | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐿 ) → dom 𝐺 = 𝑍 ) |
| 85 | 83 84 | sseqtrrd | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐿 ) → 𝑔 ⊆ dom 𝐺 ) |
| 86 | funimass4 | ⊢ ( ( Fun 𝐺 ∧ 𝑔 ⊆ dom 𝐺 ) → ( ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ↔ ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) | |
| 87 | 81 85 86 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐿 ) → ( ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ↔ ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) |
| 88 | 87 | rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ↔ ∃ 𝑔 ∈ 𝐿 ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) |
| 89 | 79 88 | anbi12d | ⊢ ( 𝜑 → ( ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ↔ ( ∃ 𝑓 ∈ 𝐿 ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) ) |
| 90 | 47 70 89 | 3bitr4d | ⊢ ( 𝜑 → ( ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ↔ ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) |
| 91 | 20 90 | imbi12d | ⊢ ( 𝜑 → ( ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ↔ ( ( 𝑆 ∈ 𝑣 ∧ 𝑅 ∈ 𝑢 ) → ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) |
| 92 | impexp | ⊢ ( ( ( 𝑆 ∈ 𝑣 ∧ 𝑅 ∈ 𝑢 ) → ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ↔ ( 𝑆 ∈ 𝑣 → ( 𝑅 ∈ 𝑢 → ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) | |
| 93 | 91 92 | bitrdi | ⊢ ( 𝜑 → ( ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ↔ ( 𝑆 ∈ 𝑣 → ( 𝑅 ∈ 𝑢 → ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) ) |
| 94 | 93 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ↔ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ( 𝑅 ∈ 𝑢 → ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) ) |
| 95 | eleq2 | ⊢ ( 𝑥 = 𝑣 → ( 𝑆 ∈ 𝑥 ↔ 𝑆 ∈ 𝑣 ) ) | |
| 96 | 95 | ralrab | ⊢ ( ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( 𝑅 ∈ 𝑢 → ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ↔ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ( 𝑅 ∈ 𝑢 → ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) |
| 97 | r19.21v | ⊢ ( ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( 𝑅 ∈ 𝑢 → ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ↔ ( 𝑅 ∈ 𝑢 → ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) | |
| 98 | 96 97 | bitr3i | ⊢ ( ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ( 𝑅 ∈ 𝑢 → ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ↔ ( 𝑅 ∈ 𝑢 → ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) |
| 99 | 94 98 | bitrdi | ⊢ ( 𝜑 → ( ∀ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ↔ ( 𝑅 ∈ 𝑢 → ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) |
| 100 | 99 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) |
| 101 | eleq2 | ⊢ ( 𝑥 = 𝑢 → ( 𝑅 ∈ 𝑥 ↔ 𝑅 ∈ 𝑢 ) ) | |
| 102 | 101 | ralrab | ⊢ ( ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) |
| 103 | 100 102 | bitr4di | ⊢ ( 𝜑 → ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ↔ ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) |
| 104 | 103 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ) → ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ↔ ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) |
| 105 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 106 | 1 105 | syl | ⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) |
| 107 | eleq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝑅 ∈ 𝑥 ↔ 𝑅 ∈ 𝑋 ) ) | |
| 108 | 107 | rspcev | ⊢ ( ( 𝑋 ∈ 𝐽 ∧ 𝑅 ∈ 𝑋 ) → ∃ 𝑥 ∈ 𝐽 𝑅 ∈ 𝑥 ) |
| 109 | rabn0 | ⊢ ( { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐽 𝑅 ∈ 𝑥 ) | |
| 110 | 108 109 | sylibr | ⊢ ( ( 𝑋 ∈ 𝐽 ∧ 𝑅 ∈ 𝑋 ) → { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ≠ ∅ ) |
| 111 | 106 110 | sylan | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ 𝑋 ) → { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ≠ ∅ ) |
| 112 | toponmax | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 ∈ 𝐾 ) | |
| 113 | 2 112 | syl | ⊢ ( 𝜑 → 𝑌 ∈ 𝐾 ) |
| 114 | eleq2 | ⊢ ( 𝑥 = 𝑌 → ( 𝑆 ∈ 𝑥 ↔ 𝑆 ∈ 𝑌 ) ) | |
| 115 | 114 | rspcev | ⊢ ( ( 𝑌 ∈ 𝐾 ∧ 𝑆 ∈ 𝑌 ) → ∃ 𝑥 ∈ 𝐾 𝑆 ∈ 𝑥 ) |
| 116 | rabn0 | ⊢ ( { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐾 𝑆 ∈ 𝑥 ) | |
| 117 | 115 116 | sylibr | ⊢ ( ( 𝑌 ∈ 𝐾 ∧ 𝑆 ∈ 𝑌 ) → { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ≠ ∅ ) |
| 118 | 113 117 | sylan | ⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑌 ) → { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ≠ ∅ ) |
| 119 | 111 118 | anim12dan | ⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ) → ( { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ≠ ∅ ∧ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ≠ ∅ ) ) |
| 120 | r19.28zv | ⊢ ( { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ≠ ∅ → ( ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ↔ ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) | |
| 121 | 120 | ralbidv | ⊢ ( { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ≠ ∅ → ( ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ↔ ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) |
| 122 | r19.27zv | ⊢ ( { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ≠ ∅ → ( ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ↔ ( ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) | |
| 123 | 121 122 | sylan9bbr | ⊢ ( ( { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ≠ ∅ ∧ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ≠ ∅ ) → ( ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ↔ ( ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) |
| 124 | 119 123 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ) → ( ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ↔ ( ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) |
| 125 | 104 124 | bitrd | ⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ) → ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ↔ ( ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) |
| 126 | 101 | ralrab | ⊢ ( ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ) ) |
| 127 | 95 | ralrab | ⊢ ( ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ↔ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) |
| 128 | 126 127 | anbi12i | ⊢ ( ( ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ↔ ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) |
| 129 | 125 128 | bitrdi | ⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ) → ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ↔ ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) |
| 130 | 17 129 | bitrid | ⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ) → ( ∀ 𝑧 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑧 → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ 𝑧 ) ↔ ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) |
| 131 | 130 | pm5.32da | ⊢ ( 𝜑 → ( ( ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ∧ ∀ 𝑧 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑧 → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ 𝑧 ) ) ↔ ( ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ∧ ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) ) |
| 132 | opelxp | ⊢ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑌 ) ↔ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ) | |
| 133 | 132 | anbi1i | ⊢ ( ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ∀ 𝑧 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑧 → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ 𝑧 ) ) ↔ ( ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ∧ ∀ 𝑧 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑧 → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ 𝑧 ) ) ) |
| 134 | an4 | ⊢ ( ( ( 𝑅 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ) ) ∧ ( 𝑆 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ↔ ( ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ∧ ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) | |
| 135 | 131 133 134 | 3bitr4g | ⊢ ( 𝜑 → ( ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ∀ 𝑧 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑧 → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ 𝑧 ) ) ↔ ( ( 𝑅 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ) ) ∧ ( 𝑆 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) ) |
| 136 | eqid | ⊢ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) = ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) | |
| 137 | 136 | txval | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 ×t 𝐾 ) = ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) ) |
| 138 | 1 2 137 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) = ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) ) |
| 139 | 138 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐽 ×t 𝐾 ) fLimf 𝐿 ) = ( ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) fLimf 𝐿 ) ) |
| 140 | 139 | fveq1d | ⊢ ( 𝜑 → ( ( ( 𝐽 ×t 𝐾 ) fLimf 𝐿 ) ‘ 𝐻 ) = ( ( ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) fLimf 𝐿 ) ‘ 𝐻 ) ) |
| 141 | 140 | eleq2d | ⊢ ( 𝜑 → ( 〈 𝑅 , 𝑆 〉 ∈ ( ( ( 𝐽 ×t 𝐾 ) fLimf 𝐿 ) ‘ 𝐻 ) ↔ 〈 𝑅 , 𝑆 〉 ∈ ( ( ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) fLimf 𝐿 ) ‘ 𝐻 ) ) ) |
| 142 | txtopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) | |
| 143 | 1 2 142 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 144 | 138 143 | eqeltrrd | ⊢ ( 𝜑 → ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 145 | 4 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) |
| 146 | 5 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑛 ) ∈ 𝑌 ) |
| 147 | 145 146 | opelxpd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 148 | 147 6 | fmptd | ⊢ ( 𝜑 → 𝐻 : 𝑍 ⟶ ( 𝑋 × 𝑌 ) ) |
| 149 | eqid | ⊢ ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) = ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) | |
| 150 | 149 | flftg | ⊢ ( ( ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐿 ∈ ( Fil ‘ 𝑍 ) ∧ 𝐻 : 𝑍 ⟶ ( 𝑋 × 𝑌 ) ) → ( 〈 𝑅 , 𝑆 〉 ∈ ( ( ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) fLimf 𝐿 ) ‘ 𝐻 ) ↔ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ∀ 𝑧 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑧 → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ 𝑧 ) ) ) ) |
| 151 | 144 3 148 150 | syl3anc | ⊢ ( 𝜑 → ( 〈 𝑅 , 𝑆 〉 ∈ ( ( ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) fLimf 𝐿 ) ‘ 𝐻 ) ↔ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ∀ 𝑧 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑧 → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ 𝑧 ) ) ) ) |
| 152 | 141 151 | bitrd | ⊢ ( 𝜑 → ( 〈 𝑅 , 𝑆 〉 ∈ ( ( ( 𝐽 ×t 𝐾 ) fLimf 𝐿 ) ‘ 𝐻 ) ↔ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ∀ 𝑧 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑧 → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ 𝑧 ) ) ) ) |
| 153 | isflf | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑍 ) ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( 𝑅 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝑅 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ) ) ) ) | |
| 154 | 1 3 4 153 | syl3anc | ⊢ ( 𝜑 → ( 𝑅 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝑅 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ) ) ) ) |
| 155 | isflf | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑍 ) ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) → ( 𝑆 ∈ ( ( 𝐾 fLimf 𝐿 ) ‘ 𝐺 ) ↔ ( 𝑆 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) | |
| 156 | 2 3 5 155 | syl3anc | ⊢ ( 𝜑 → ( 𝑆 ∈ ( ( 𝐾 fLimf 𝐿 ) ‘ 𝐺 ) ↔ ( 𝑆 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) |
| 157 | 154 156 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑅 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ∧ 𝑆 ∈ ( ( 𝐾 fLimf 𝐿 ) ‘ 𝐺 ) ) ↔ ( ( 𝑅 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ) ) ∧ ( 𝑆 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) ) |
| 158 | 135 152 157 | 3bitr4d | ⊢ ( 𝜑 → ( 〈 𝑅 , 𝑆 〉 ∈ ( ( ( 𝐽 ×t 𝐾 ) fLimf 𝐿 ) ‘ 𝐻 ) ↔ ( 𝑅 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ∧ 𝑆 ∈ ( ( 𝐾 fLimf 𝐿 ) ‘ 𝐺 ) ) ) ) |