This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngop.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
| ralrnmpo.2 | ⊢ ( 𝑧 = 𝐶 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | ralrnmpo | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ( ∀ 𝑧 ∈ ran 𝐹 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngop.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
| 2 | ralrnmpo.2 | ⊢ ( 𝑧 = 𝐶 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | 1 | rnmpo | ⊢ ran 𝐹 = { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑤 = 𝐶 } |
| 4 | 3 | raleqi | ⊢ ( ∀ 𝑧 ∈ ran 𝐹 𝜑 ↔ ∀ 𝑧 ∈ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑤 = 𝐶 } 𝜑 ) |
| 5 | eqeq1 | ⊢ ( 𝑤 = 𝑧 → ( 𝑤 = 𝐶 ↔ 𝑧 = 𝐶 ) ) | |
| 6 | 5 | 2rexbidv | ⊢ ( 𝑤 = 𝑧 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑤 = 𝐶 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 ) ) |
| 7 | 6 | ralab | ⊢ ( ∀ 𝑧 ∈ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑤 = 𝐶 } 𝜑 ↔ ∀ 𝑧 ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ) |
| 8 | ralcom4 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ↔ ∀ 𝑧 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ) | |
| 9 | r19.23v | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ) | |
| 10 | 9 | albii | ⊢ ( ∀ 𝑧 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ↔ ∀ 𝑧 ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ) |
| 11 | 8 10 | bitr2i | ⊢ ( ∀ 𝑧 ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ) |
| 12 | 4 7 11 | 3bitri | ⊢ ( ∀ 𝑧 ∈ ran 𝐹 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ) |
| 13 | ralcom4 | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ( 𝑧 = 𝐶 → 𝜑 ) ↔ ∀ 𝑧 ∀ 𝑦 ∈ 𝐵 ( 𝑧 = 𝐶 → 𝜑 ) ) | |
| 14 | r19.23v | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑧 = 𝐶 → 𝜑 ) ↔ ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ) | |
| 15 | 14 | albii | ⊢ ( ∀ 𝑧 ∀ 𝑦 ∈ 𝐵 ( 𝑧 = 𝐶 → 𝜑 ) ↔ ∀ 𝑧 ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ) |
| 16 | 13 15 | bitri | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ( 𝑧 = 𝐶 → 𝜑 ) ↔ ∀ 𝑧 ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ) |
| 17 | nfv | ⊢ Ⅎ 𝑧 𝜓 | |
| 18 | 17 2 | ceqsalg | ⊢ ( 𝐶 ∈ 𝑉 → ( ∀ 𝑧 ( 𝑧 = 𝐶 → 𝜑 ) ↔ 𝜓 ) ) |
| 19 | 18 | ralimi | ⊢ ( ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑧 ( 𝑧 = 𝐶 → 𝜑 ) ↔ 𝜓 ) ) |
| 20 | ralbi | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑧 ( 𝑧 = 𝐶 → 𝜑 ) ↔ 𝜓 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ( 𝑧 = 𝐶 → 𝜑 ) ↔ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) | |
| 21 | 19 20 | syl | ⊢ ( ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ( 𝑧 = 𝐶 → 𝜑 ) ↔ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) |
| 22 | 16 21 | bitr3id | ⊢ ( ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ( ∀ 𝑧 ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ↔ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) |
| 23 | 22 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑧 ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ↔ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) |
| 24 | ralbi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑧 ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ↔ ∀ 𝑦 ∈ 𝐵 𝜓 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜓 ) ) | |
| 25 | 23 24 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜓 ) ) |
| 26 | 12 25 | bitrid | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ( ∀ 𝑧 ∈ ran 𝐹 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜓 ) ) |