This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit points of a function can be defined using topological bases. (Contributed by Mario Carneiro, 19-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | flftg.l | ⊢ 𝐽 = ( topGen ‘ 𝐵 ) | |
| Assertion | flftg | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flftg.l | ⊢ 𝐽 = ( topGen ‘ 𝐵 ) | |
| 2 | isflf | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝐴 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ) ) ) | |
| 3 | 1 | raleqi | ⊢ ( ∀ 𝑢 ∈ 𝐽 ( 𝐴 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ↔ ∀ 𝑢 ∈ ( topGen ‘ 𝐵 ) ( 𝐴 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ) |
| 4 | simpl1 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 5 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 6 | 4 5 | syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐽 ∈ Top ) |
| 7 | 1 6 | eqeltrrid | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( topGen ‘ 𝐵 ) ∈ Top ) |
| 8 | tgclb | ⊢ ( 𝐵 ∈ TopBases ↔ ( topGen ‘ 𝐵 ) ∈ Top ) | |
| 9 | 7 8 | sylibr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐵 ∈ TopBases ) |
| 10 | bastg | ⊢ ( 𝐵 ∈ TopBases → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) | |
| 11 | eleq2w | ⊢ ( 𝑢 = 𝑜 → ( 𝐴 ∈ 𝑢 ↔ 𝐴 ∈ 𝑜 ) ) | |
| 12 | sseq2 | ⊢ ( 𝑢 = 𝑜 → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ↔ ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) | |
| 13 | 12 | rexbidv | ⊢ ( 𝑢 = 𝑜 → ( ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ↔ ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) |
| 14 | 11 13 | imbi12d | ⊢ ( 𝑢 = 𝑜 → ( ( 𝐴 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ↔ ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
| 15 | 14 | cbvralvw | ⊢ ( ∀ 𝑢 ∈ ( topGen ‘ 𝐵 ) ( 𝐴 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ↔ ∀ 𝑜 ∈ ( topGen ‘ 𝐵 ) ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) |
| 16 | ssralv | ⊢ ( 𝐵 ⊆ ( topGen ‘ 𝐵 ) → ( ∀ 𝑜 ∈ ( topGen ‘ 𝐵 ) ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) → ∀ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) | |
| 17 | 15 16 | biimtrid | ⊢ ( 𝐵 ⊆ ( topGen ‘ 𝐵 ) → ( ∀ 𝑢 ∈ ( topGen ‘ 𝐵 ) ( 𝐴 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) → ∀ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
| 18 | 9 10 17 | 3syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑢 ∈ ( topGen ‘ 𝐵 ) ( 𝐴 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) → ∀ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
| 19 | tg2 | ⊢ ( ( 𝑢 ∈ ( topGen ‘ 𝐵 ) ∧ 𝐴 ∈ 𝑢 ) → ∃ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢 ) ) | |
| 20 | r19.29 | ⊢ ( ( ∀ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ∧ ∃ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢 ) ) → ∃ 𝑜 ∈ 𝐵 ( ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ∧ ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢 ) ) ) | |
| 21 | simpl | ⊢ ( ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢 ) → 𝐴 ∈ 𝑜 ) | |
| 22 | simpr | ⊢ ( ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢 ) → 𝑜 ⊆ 𝑢 ) | |
| 23 | sstr2 | ⊢ ( ( 𝐹 “ 𝑠 ) ⊆ 𝑜 → ( 𝑜 ⊆ 𝑢 → ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ) | |
| 24 | 22 23 | syl5com | ⊢ ( ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢 ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑜 → ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ) |
| 25 | 24 | reximdv | ⊢ ( ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢 ) → ( ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ) |
| 26 | 21 25 | embantd | ⊢ ( ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢 ) → ( ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ) |
| 27 | 26 | impcom | ⊢ ( ( ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ∧ ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢 ) ) → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) |
| 28 | 27 | rexlimivw | ⊢ ( ∃ 𝑜 ∈ 𝐵 ( ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ∧ ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢 ) ) → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) |
| 29 | 20 28 | syl | ⊢ ( ( ∀ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ∧ ∃ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢 ) ) → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) |
| 30 | 29 | ex | ⊢ ( ∀ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) → ( ∃ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑢 ) → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ) |
| 31 | 19 30 | syl5 | ⊢ ( ∀ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) → ( ( 𝑢 ∈ ( topGen ‘ 𝐵 ) ∧ 𝐴 ∈ 𝑢 ) → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ) |
| 32 | 31 | expdimp | ⊢ ( ( ∀ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ∧ 𝑢 ∈ ( topGen ‘ 𝐵 ) ) → ( 𝐴 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ) |
| 33 | 32 | ralrimiva | ⊢ ( ∀ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) → ∀ 𝑢 ∈ ( topGen ‘ 𝐵 ) ( 𝐴 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ) |
| 34 | 18 33 | impbid1 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑢 ∈ ( topGen ‘ 𝐵 ) ( 𝐴 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ↔ ∀ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
| 35 | 3 34 | bitrid | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑢 ∈ 𝐽 ( 𝐴 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ↔ ∀ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
| 36 | 35 | pm5.32da | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝐴 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑢 ) ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) ) |
| 37 | 2 36 | bitrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐵 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) ) |