This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a limit point of a function. (Contributed by Jeff Hankins, 8-Nov-2009) (Revised by Stefan O'Rear, 7-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isflf | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flfval | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) = ( 𝐽 fLim ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) | |
| 2 | 1 | eleq2d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ 𝐴 ∈ ( 𝐽 fLim ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) ) |
| 3 | simp1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 4 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝑋 ∈ 𝐽 ) |
| 6 | filfbas | ⊢ ( 𝐿 ∈ ( Fil ‘ 𝑌 ) → 𝐿 ∈ ( fBas ‘ 𝑌 ) ) | |
| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝐿 ∈ ( fBas ‘ 𝑌 ) ) |
| 8 | simp3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝐹 : 𝑌 ⟶ 𝑋 ) | |
| 9 | fmfil | ⊢ ( ( 𝑋 ∈ 𝐽 ∧ 𝐿 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ∈ ( Fil ‘ 𝑋 ) ) | |
| 10 | 5 7 8 9 | syl3anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ∈ ( Fil ‘ 𝑋 ) ) |
| 11 | flimopn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fLim ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑜 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) ) ) | |
| 12 | 3 10 11 | syl2anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( 𝐽 fLim ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑜 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) ) ) |
| 13 | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → 𝑜 ⊆ 𝑋 ) | |
| 14 | 3 13 | sylan | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → 𝑜 ⊆ 𝑋 ) |
| 15 | elfm | ⊢ ( ( 𝑋 ∈ 𝐽 ∧ 𝐿 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑜 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ↔ ( 𝑜 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) | |
| 16 | 5 7 8 15 | syl3anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑜 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ↔ ( 𝑜 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
| 17 | 16 | adantr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( 𝑜 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ↔ ( 𝑜 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
| 18 | 14 17 | mpbirand | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( 𝑜 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ↔ ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) |
| 19 | 18 | imbi2d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( ( 𝐴 ∈ 𝑜 → 𝑜 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ↔ ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
| 20 | 19 | ralbidva | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑜 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
| 21 | 20 | anbi2d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑜 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) ) |
| 22 | 2 12 21 | 3bitrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) ) |