This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for txcmp . (Contributed by Mario Carneiro, 14-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | txcmp.x | ⊢ 𝑋 = ∪ 𝑅 | |
| txcmp.y | ⊢ 𝑌 = ∪ 𝑆 | ||
| txcmp.r | ⊢ ( 𝜑 → 𝑅 ∈ Comp ) | ||
| txcmp.s | ⊢ ( 𝜑 → 𝑆 ∈ Comp ) | ||
| txcmp.w | ⊢ ( 𝜑 → 𝑊 ⊆ ( 𝑅 ×t 𝑆 ) ) | ||
| txcmp.u | ⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ∪ 𝑊 ) | ||
| txcmp.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑌 ) | ||
| Assertion | txcmplem1 | ⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txcmp.x | ⊢ 𝑋 = ∪ 𝑅 | |
| 2 | txcmp.y | ⊢ 𝑌 = ∪ 𝑆 | |
| 3 | txcmp.r | ⊢ ( 𝜑 → 𝑅 ∈ Comp ) | |
| 4 | txcmp.s | ⊢ ( 𝜑 → 𝑆 ∈ Comp ) | |
| 5 | txcmp.w | ⊢ ( 𝜑 → 𝑊 ⊆ ( 𝑅 ×t 𝑆 ) ) | |
| 6 | txcmp.u | ⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ∪ 𝑊 ) | |
| 7 | txcmp.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑌 ) | |
| 8 | id | ⊢ ( 𝑥 ∈ 𝑋 → 𝑥 ∈ 𝑋 ) | |
| 9 | opelxpi | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ) → 〈 𝑥 , 𝐴 〉 ∈ ( 𝑋 × 𝑌 ) ) | |
| 10 | 8 7 9 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 〈 𝑥 , 𝐴 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 11 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑋 × 𝑌 ) = ∪ 𝑊 ) |
| 12 | 10 11 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 〈 𝑥 , 𝐴 〉 ∈ ∪ 𝑊 ) |
| 13 | eluni2 | ⊢ ( 〈 𝑥 , 𝐴 〉 ∈ ∪ 𝑊 ↔ ∃ 𝑘 ∈ 𝑊 〈 𝑥 , 𝐴 〉 ∈ 𝑘 ) | |
| 14 | 12 13 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑘 ∈ 𝑊 〈 𝑥 , 𝐴 〉 ∈ 𝑘 ) |
| 15 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑊 ⊆ ( 𝑅 ×t 𝑆 ) ) |
| 16 | 15 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) → 𝑘 ∈ ( 𝑅 ×t 𝑆 ) ) |
| 17 | eltx | ⊢ ( ( 𝑅 ∈ Comp ∧ 𝑆 ∈ Comp ) → ( 𝑘 ∈ ( 𝑅 ×t 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑘 ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑦 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) ) | |
| 18 | 3 4 17 | syl2anc | ⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝑅 ×t 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑘 ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑦 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑘 ∈ ( 𝑅 ×t 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑘 ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑦 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) ) |
| 20 | 19 | biimpa | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 𝑅 ×t 𝑆 ) ) → ∀ 𝑦 ∈ 𝑘 ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑦 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) |
| 21 | 16 20 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) → ∀ 𝑦 ∈ 𝑘 ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑦 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) |
| 22 | eleq1 | ⊢ ( 𝑦 = 〈 𝑥 , 𝐴 〉 → ( 𝑦 ∈ ( 𝑟 × 𝑠 ) ↔ 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ) ) | |
| 23 | 22 | anbi1d | ⊢ ( 𝑦 = 〈 𝑥 , 𝐴 〉 → ( ( 𝑦 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ↔ ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) ) |
| 24 | 23 | 2rexbidv | ⊢ ( 𝑦 = 〈 𝑥 , 𝐴 〉 → ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑦 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ↔ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) ) |
| 25 | 24 | rspccv | ⊢ ( ∀ 𝑦 ∈ 𝑘 ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑦 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) → ( 〈 𝑥 , 𝐴 〉 ∈ 𝑘 → ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) ) |
| 26 | 21 25 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) → ( 〈 𝑥 , 𝐴 〉 ∈ 𝑘 → ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) ) |
| 27 | opelxp1 | ⊢ ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) → 𝑥 ∈ 𝑟 ) | |
| 28 | 27 | ad2antrl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) ∧ ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) → 𝑥 ∈ 𝑟 ) |
| 29 | opelxp2 | ⊢ ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) → 𝐴 ∈ 𝑠 ) | |
| 30 | 29 | ad2antrl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) ∧ ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) → 𝐴 ∈ 𝑠 ) |
| 31 | 30 | snssd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) ∧ ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) → { 𝐴 } ⊆ 𝑠 ) |
| 32 | xpss2 | ⊢ ( { 𝐴 } ⊆ 𝑠 → ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑟 × 𝑠 ) ) | |
| 33 | 31 32 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) ∧ ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) → ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑟 × 𝑠 ) ) |
| 34 | simprr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) ∧ ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) → ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) | |
| 35 | 33 34 | sstrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) ∧ ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) → ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) |
| 36 | 28 35 | jca | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) ∧ ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) → ( 𝑥 ∈ 𝑟 ∧ ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) |
| 37 | 36 | ex | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) → ( ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) → ( 𝑥 ∈ 𝑟 ∧ ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) ) |
| 38 | 37 | rexlimdvw | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) → ( ∃ 𝑠 ∈ 𝑆 ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) → ( 𝑥 ∈ 𝑟 ∧ ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) ) |
| 39 | 38 | reximdv | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) → ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) → ∃ 𝑟 ∈ 𝑅 ( 𝑥 ∈ 𝑟 ∧ ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) ) |
| 40 | 26 39 | syld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) → ( 〈 𝑥 , 𝐴 〉 ∈ 𝑘 → ∃ 𝑟 ∈ 𝑅 ( 𝑥 ∈ 𝑟 ∧ ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) ) |
| 41 | 40 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑘 ∈ 𝑊 〈 𝑥 , 𝐴 〉 ∈ 𝑘 → ∃ 𝑘 ∈ 𝑊 ∃ 𝑟 ∈ 𝑅 ( 𝑥 ∈ 𝑟 ∧ ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) ) |
| 42 | 14 41 | mpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑘 ∈ 𝑊 ∃ 𝑟 ∈ 𝑅 ( 𝑥 ∈ 𝑟 ∧ ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) |
| 43 | rexcom | ⊢ ( ∃ 𝑘 ∈ 𝑊 ∃ 𝑟 ∈ 𝑅 ( 𝑥 ∈ 𝑟 ∧ ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ↔ ∃ 𝑟 ∈ 𝑅 ∃ 𝑘 ∈ 𝑊 ( 𝑥 ∈ 𝑟 ∧ ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) | |
| 44 | r19.42v | ⊢ ( ∃ 𝑘 ∈ 𝑊 ( 𝑥 ∈ 𝑟 ∧ ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ↔ ( 𝑥 ∈ 𝑟 ∧ ∃ 𝑘 ∈ 𝑊 ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) | |
| 45 | 44 | rexbii | ⊢ ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑘 ∈ 𝑊 ( 𝑥 ∈ 𝑟 ∧ ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ↔ ∃ 𝑟 ∈ 𝑅 ( 𝑥 ∈ 𝑟 ∧ ∃ 𝑘 ∈ 𝑊 ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) |
| 46 | 43 45 | bitri | ⊢ ( ∃ 𝑘 ∈ 𝑊 ∃ 𝑟 ∈ 𝑅 ( 𝑥 ∈ 𝑟 ∧ ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ↔ ∃ 𝑟 ∈ 𝑅 ( 𝑥 ∈ 𝑟 ∧ ∃ 𝑘 ∈ 𝑊 ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) |
| 47 | 42 46 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑟 ∈ 𝑅 ( 𝑥 ∈ 𝑟 ∧ ∃ 𝑘 ∈ 𝑊 ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) |
| 48 | 47 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ 𝑅 ( 𝑥 ∈ 𝑟 ∧ ∃ 𝑘 ∈ 𝑊 ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) |
| 49 | sseq2 | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑟 ) → ( ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ↔ ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) | |
| 50 | 1 49 | cmpcovf | ⊢ ( ( 𝑅 ∈ Comp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ 𝑅 ( 𝑥 ∈ 𝑟 ∧ ∃ 𝑘 ∈ 𝑊 ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) → ∃ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ( 𝑋 = ∪ 𝑡 ∧ ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) |
| 51 | 3 48 50 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ( 𝑋 = ∪ 𝑡 ∧ ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) |
| 52 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → 𝑅 ∈ Comp ) |
| 53 | cmptop | ⊢ ( 𝑆 ∈ Comp → 𝑆 ∈ Top ) | |
| 54 | 4 53 | syl | ⊢ ( 𝜑 → 𝑆 ∈ Top ) |
| 55 | 54 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → 𝑆 ∈ Top ) |
| 56 | cmptop | ⊢ ( 𝑅 ∈ Comp → 𝑅 ∈ Top ) | |
| 57 | 52 56 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → 𝑅 ∈ Top ) |
| 58 | txtop | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) | |
| 59 | 57 55 58 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 60 | simprrl | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → 𝑓 : 𝑡 ⟶ 𝑊 ) | |
| 61 | 60 | frnd | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ran 𝑓 ⊆ 𝑊 ) |
| 62 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → 𝑊 ⊆ ( 𝑅 ×t 𝑆 ) ) |
| 63 | 61 62 | sstrd | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ran 𝑓 ⊆ ( 𝑅 ×t 𝑆 ) ) |
| 64 | uniopn | ⊢ ( ( ( 𝑅 ×t 𝑆 ) ∈ Top ∧ ran 𝑓 ⊆ ( 𝑅 ×t 𝑆 ) ) → ∪ ran 𝑓 ∈ ( 𝑅 ×t 𝑆 ) ) | |
| 65 | 59 63 64 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ∪ ran 𝑓 ∈ ( 𝑅 ×t 𝑆 ) ) |
| 66 | simprrr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) | |
| 67 | ss2iun | ⊢ ( ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) → ∪ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ∪ 𝑟 ∈ 𝑡 ( 𝑓 ‘ 𝑟 ) ) | |
| 68 | 66 67 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ∪ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ∪ 𝑟 ∈ 𝑡 ( 𝑓 ‘ 𝑟 ) ) |
| 69 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → 𝑋 = ∪ 𝑡 ) | |
| 70 | uniiun | ⊢ ∪ 𝑡 = ∪ 𝑟 ∈ 𝑡 𝑟 | |
| 71 | 69 70 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → 𝑋 = ∪ 𝑟 ∈ 𝑡 𝑟 ) |
| 72 | 71 | xpeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ( 𝑋 × { 𝐴 } ) = ( ∪ 𝑟 ∈ 𝑡 𝑟 × { 𝐴 } ) ) |
| 73 | xpiundir | ⊢ ( ∪ 𝑟 ∈ 𝑡 𝑟 × { 𝐴 } ) = ∪ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) | |
| 74 | 72 73 | eqtr2di | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ∪ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) = ( 𝑋 × { 𝐴 } ) ) |
| 75 | 60 | ffnd | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → 𝑓 Fn 𝑡 ) |
| 76 | fniunfv | ⊢ ( 𝑓 Fn 𝑡 → ∪ 𝑟 ∈ 𝑡 ( 𝑓 ‘ 𝑟 ) = ∪ ran 𝑓 ) | |
| 77 | 75 76 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ∪ 𝑟 ∈ 𝑡 ( 𝑓 ‘ 𝑟 ) = ∪ ran 𝑓 ) |
| 78 | 68 74 77 | 3sstr3d | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ( 𝑋 × { 𝐴 } ) ⊆ ∪ ran 𝑓 ) |
| 79 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → 𝐴 ∈ 𝑌 ) |
| 80 | 1 2 52 55 65 78 79 | txtube | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ ∪ ran 𝑓 ) ) |
| 81 | vex | ⊢ 𝑓 ∈ V | |
| 82 | 81 | rnex | ⊢ ran 𝑓 ∈ V |
| 83 | 82 | elpw | ⊢ ( ran 𝑓 ∈ 𝒫 𝑊 ↔ ran 𝑓 ⊆ 𝑊 ) |
| 84 | 61 83 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ran 𝑓 ∈ 𝒫 𝑊 ) |
| 85 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) | |
| 86 | 85 | elin2d | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → 𝑡 ∈ Fin ) |
| 87 | dffn4 | ⊢ ( 𝑓 Fn 𝑡 ↔ 𝑓 : 𝑡 –onto→ ran 𝑓 ) | |
| 88 | 75 87 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → 𝑓 : 𝑡 –onto→ ran 𝑓 ) |
| 89 | fofi | ⊢ ( ( 𝑡 ∈ Fin ∧ 𝑓 : 𝑡 –onto→ ran 𝑓 ) → ran 𝑓 ∈ Fin ) | |
| 90 | 86 88 89 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ran 𝑓 ∈ Fin ) |
| 91 | 84 90 | elind | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ran 𝑓 ∈ ( 𝒫 𝑊 ∩ Fin ) ) |
| 92 | unieq | ⊢ ( 𝑣 = ran 𝑓 → ∪ 𝑣 = ∪ ran 𝑓 ) | |
| 93 | 92 | sseq2d | ⊢ ( 𝑣 = ran 𝑓 → ( ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ↔ ( 𝑋 × 𝑢 ) ⊆ ∪ ran 𝑓 ) ) |
| 94 | 93 | rspcev | ⊢ ( ( ran 𝑓 ∈ ( 𝒫 𝑊 ∩ Fin ) ∧ ( 𝑋 × 𝑢 ) ⊆ ∪ ran 𝑓 ) → ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) |
| 95 | 94 | ex | ⊢ ( ran 𝑓 ∈ ( 𝒫 𝑊 ∩ Fin ) → ( ( 𝑋 × 𝑢 ) ⊆ ∪ ran 𝑓 → ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) ) |
| 96 | 91 95 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ( ( 𝑋 × 𝑢 ) ⊆ ∪ ran 𝑓 → ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) ) |
| 97 | 96 | anim2d | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ( ( 𝐴 ∈ 𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ ∪ ran 𝑓 ) → ( 𝐴 ∈ 𝑢 ∧ ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) ) ) |
| 98 | 97 | reximdv | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ( ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ ∪ ran 𝑓 ) → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) ) ) |
| 99 | 80 98 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) ) |
| 100 | 99 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ 𝑋 = ∪ 𝑡 ) → ( ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) ) ) |
| 101 | 100 | exlimdv | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ 𝑋 = ∪ 𝑡 ) → ( ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) ) ) |
| 102 | 101 | expimpd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) → ( ( 𝑋 = ∪ 𝑡 ∧ ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) ) ) |
| 103 | 102 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ( 𝑋 = ∪ 𝑡 ∧ ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) ) ) |
| 104 | 51 103 | mpd | ⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) ) |