This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uniopn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ) → ∪ 𝐴 ∈ 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopg | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ) ) ) | |
| 2 | 1 | ibi | ⊢ ( 𝐽 ∈ Top → ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ) ) |
| 3 | 2 | simpld | ⊢ ( 𝐽 ∈ Top → ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ) |
| 4 | elpw2g | ⊢ ( 𝐽 ∈ Top → ( 𝐴 ∈ 𝒫 𝐽 ↔ 𝐴 ⊆ 𝐽 ) ) | |
| 5 | 4 | biimpar | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ) → 𝐴 ∈ 𝒫 𝐽 ) |
| 6 | sseq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊆ 𝐽 ↔ 𝐴 ⊆ 𝐽 ) ) | |
| 7 | unieq | ⊢ ( 𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴 ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ∪ 𝑥 ∈ 𝐽 ↔ ∪ 𝐴 ∈ 𝐽 ) ) |
| 9 | 6 8 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ↔ ( 𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽 ) ) ) |
| 10 | 9 | spcgv | ⊢ ( 𝐴 ∈ 𝒫 𝐽 → ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) → ( 𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽 ) ) ) |
| 11 | 5 10 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ) → ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) → ( 𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽 ) ) ) |
| 12 | 11 | com23 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ) → ( 𝐴 ⊆ 𝐽 → ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) → ∪ 𝐴 ∈ 𝐽 ) ) ) |
| 13 | 12 | ex | ⊢ ( 𝐽 ∈ Top → ( 𝐴 ⊆ 𝐽 → ( 𝐴 ⊆ 𝐽 → ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) → ∪ 𝐴 ∈ 𝐽 ) ) ) ) |
| 14 | 13 | pm2.43d | ⊢ ( 𝐽 ∈ Top → ( 𝐴 ⊆ 𝐽 → ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) → ∪ 𝐴 ∈ 𝐽 ) ) ) |
| 15 | 3 14 | mpid | ⊢ ( 𝐽 ∈ Top → ( 𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽 ) ) |
| 16 | 15 | imp | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ) → ∪ 𝐴 ∈ 𝐽 ) |