This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for txcmp . (Contributed by Mario Carneiro, 14-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | txcmp.x | ⊢ 𝑋 = ∪ 𝑅 | |
| txcmp.y | ⊢ 𝑌 = ∪ 𝑆 | ||
| txcmp.r | ⊢ ( 𝜑 → 𝑅 ∈ Comp ) | ||
| txcmp.s | ⊢ ( 𝜑 → 𝑆 ∈ Comp ) | ||
| txcmp.w | ⊢ ( 𝜑 → 𝑊 ⊆ ( 𝑅 ×t 𝑆 ) ) | ||
| txcmp.u | ⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ∪ 𝑊 ) | ||
| Assertion | txcmplem2 | ⊢ ( 𝜑 → ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑌 ) = ∪ 𝑣 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txcmp.x | ⊢ 𝑋 = ∪ 𝑅 | |
| 2 | txcmp.y | ⊢ 𝑌 = ∪ 𝑆 | |
| 3 | txcmp.r | ⊢ ( 𝜑 → 𝑅 ∈ Comp ) | |
| 4 | txcmp.s | ⊢ ( 𝜑 → 𝑆 ∈ Comp ) | |
| 5 | txcmp.w | ⊢ ( 𝜑 → 𝑊 ⊆ ( 𝑅 ×t 𝑆 ) ) | |
| 6 | txcmp.u | ⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ∪ 𝑊 ) | |
| 7 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑅 ∈ Comp ) |
| 8 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑆 ∈ Comp ) |
| 9 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑊 ⊆ ( 𝑅 ×t 𝑆 ) ) |
| 10 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑋 × 𝑌 ) = ∪ 𝑊 ) |
| 11 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ 𝑌 ) | |
| 12 | 1 2 7 8 9 10 11 | txcmplem1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ∃ 𝑢 ∈ 𝑆 ( 𝑥 ∈ 𝑢 ∧ ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) ) |
| 13 | 12 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑌 ∃ 𝑢 ∈ 𝑆 ( 𝑥 ∈ 𝑢 ∧ ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) ) |
| 14 | unieq | ⊢ ( 𝑣 = ( 𝑓 ‘ 𝑢 ) → ∪ 𝑣 = ∪ ( 𝑓 ‘ 𝑢 ) ) | |
| 15 | 14 | sseq2d | ⊢ ( 𝑣 = ( 𝑓 ‘ 𝑢 ) → ( ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ↔ ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) |
| 16 | 2 15 | cmpcovf | ⊢ ( ( 𝑆 ∈ Comp ∧ ∀ 𝑥 ∈ 𝑌 ∃ 𝑢 ∈ 𝑆 ( 𝑥 ∈ 𝑢 ∧ ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) ) → ∃ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ( 𝑌 = ∪ 𝑤 ∧ ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) |
| 17 | 4 13 16 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ( 𝑌 = ∪ 𝑤 ∧ ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) |
| 18 | simprrl | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ) | |
| 19 | ffn | ⊢ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) → 𝑓 Fn 𝑤 ) | |
| 20 | fniunfv | ⊢ ( 𝑓 Fn 𝑤 → ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) = ∪ ran 𝑓 ) | |
| 21 | 18 19 20 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) = ∪ ran 𝑓 ) |
| 22 | 18 | frnd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ran 𝑓 ⊆ ( 𝒫 𝑊 ∩ Fin ) ) |
| 23 | inss1 | ⊢ ( 𝒫 𝑊 ∩ Fin ) ⊆ 𝒫 𝑊 | |
| 24 | 22 23 | sstrdi | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ran 𝑓 ⊆ 𝒫 𝑊 ) |
| 25 | sspwuni | ⊢ ( ran 𝑓 ⊆ 𝒫 𝑊 ↔ ∪ ran 𝑓 ⊆ 𝑊 ) | |
| 26 | 24 25 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ∪ ran 𝑓 ⊆ 𝑊 ) |
| 27 | 21 26 | eqsstrd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ⊆ 𝑊 ) |
| 28 | vex | ⊢ 𝑤 ∈ V | |
| 29 | fvex | ⊢ ( 𝑓 ‘ 𝑧 ) ∈ V | |
| 30 | 28 29 | iunex | ⊢ ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ∈ V |
| 31 | 30 | elpw | ⊢ ( ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ∈ 𝒫 𝑊 ↔ ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ⊆ 𝑊 ) |
| 32 | 27 31 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ∈ 𝒫 𝑊 ) |
| 33 | inss2 | ⊢ ( 𝒫 𝑆 ∩ Fin ) ⊆ Fin | |
| 34 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) | |
| 35 | 33 34 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → 𝑤 ∈ Fin ) |
| 36 | inss2 | ⊢ ( 𝒫 𝑊 ∩ Fin ) ⊆ Fin | |
| 37 | fss | ⊢ ( ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ( 𝒫 𝑊 ∩ Fin ) ⊆ Fin ) → 𝑓 : 𝑤 ⟶ Fin ) | |
| 38 | 18 36 37 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → 𝑓 : 𝑤 ⟶ Fin ) |
| 39 | ffvelcdm | ⊢ ( ( 𝑓 : 𝑤 ⟶ Fin ∧ 𝑧 ∈ 𝑤 ) → ( 𝑓 ‘ 𝑧 ) ∈ Fin ) | |
| 40 | 39 | ralrimiva | ⊢ ( 𝑓 : 𝑤 ⟶ Fin → ∀ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ∈ Fin ) |
| 41 | 38 40 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ∀ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ∈ Fin ) |
| 42 | iunfi | ⊢ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ∈ Fin ) → ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ∈ Fin ) | |
| 43 | 35 41 42 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ∈ Fin ) |
| 44 | 32 43 | elind | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ∈ ( 𝒫 𝑊 ∩ Fin ) ) |
| 45 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → 𝑌 = ∪ 𝑤 ) | |
| 46 | uniiun | ⊢ ∪ 𝑤 = ∪ 𝑧 ∈ 𝑤 𝑧 | |
| 47 | 45 46 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → 𝑌 = ∪ 𝑧 ∈ 𝑤 𝑧 ) |
| 48 | 47 | xpeq2d | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ( 𝑋 × 𝑌 ) = ( 𝑋 × ∪ 𝑧 ∈ 𝑤 𝑧 ) ) |
| 49 | xpiundi | ⊢ ( 𝑋 × ∪ 𝑧 ∈ 𝑤 𝑧 ) = ∪ 𝑧 ∈ 𝑤 ( 𝑋 × 𝑧 ) | |
| 50 | 48 49 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ( 𝑋 × 𝑌 ) = ∪ 𝑧 ∈ 𝑤 ( 𝑋 × 𝑧 ) ) |
| 51 | simprrr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) | |
| 52 | xpeq2 | ⊢ ( 𝑢 = 𝑧 → ( 𝑋 × 𝑢 ) = ( 𝑋 × 𝑧 ) ) | |
| 53 | fveq2 | ⊢ ( 𝑢 = 𝑧 → ( 𝑓 ‘ 𝑢 ) = ( 𝑓 ‘ 𝑧 ) ) | |
| 54 | 53 | unieqd | ⊢ ( 𝑢 = 𝑧 → ∪ ( 𝑓 ‘ 𝑢 ) = ∪ ( 𝑓 ‘ 𝑧 ) ) |
| 55 | 52 54 | sseq12d | ⊢ ( 𝑢 = 𝑧 → ( ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ↔ ( 𝑋 × 𝑧 ) ⊆ ∪ ( 𝑓 ‘ 𝑧 ) ) ) |
| 56 | 55 | cbvralvw | ⊢ ( ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ↔ ∀ 𝑧 ∈ 𝑤 ( 𝑋 × 𝑧 ) ⊆ ∪ ( 𝑓 ‘ 𝑧 ) ) |
| 57 | 51 56 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ∀ 𝑧 ∈ 𝑤 ( 𝑋 × 𝑧 ) ⊆ ∪ ( 𝑓 ‘ 𝑧 ) ) |
| 58 | ss2iun | ⊢ ( ∀ 𝑧 ∈ 𝑤 ( 𝑋 × 𝑧 ) ⊆ ∪ ( 𝑓 ‘ 𝑧 ) → ∪ 𝑧 ∈ 𝑤 ( 𝑋 × 𝑧 ) ⊆ ∪ 𝑧 ∈ 𝑤 ∪ ( 𝑓 ‘ 𝑧 ) ) | |
| 59 | 57 58 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ∪ 𝑧 ∈ 𝑤 ( 𝑋 × 𝑧 ) ⊆ ∪ 𝑧 ∈ 𝑤 ∪ ( 𝑓 ‘ 𝑧 ) ) |
| 60 | 50 59 | eqsstrd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ( 𝑋 × 𝑌 ) ⊆ ∪ 𝑧 ∈ 𝑤 ∪ ( 𝑓 ‘ 𝑧 ) ) |
| 61 | 18 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) ∧ 𝑧 ∈ 𝑤 ) → ( 𝑓 ‘ 𝑧 ) ∈ ( 𝒫 𝑊 ∩ Fin ) ) |
| 62 | 23 61 | sselid | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) ∧ 𝑧 ∈ 𝑤 ) → ( 𝑓 ‘ 𝑧 ) ∈ 𝒫 𝑊 ) |
| 63 | elpwi | ⊢ ( ( 𝑓 ‘ 𝑧 ) ∈ 𝒫 𝑊 → ( 𝑓 ‘ 𝑧 ) ⊆ 𝑊 ) | |
| 64 | uniss | ⊢ ( ( 𝑓 ‘ 𝑧 ) ⊆ 𝑊 → ∪ ( 𝑓 ‘ 𝑧 ) ⊆ ∪ 𝑊 ) | |
| 65 | 62 63 64 | 3syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) ∧ 𝑧 ∈ 𝑤 ) → ∪ ( 𝑓 ‘ 𝑧 ) ⊆ ∪ 𝑊 ) |
| 66 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) ∧ 𝑧 ∈ 𝑤 ) → ( 𝑋 × 𝑌 ) = ∪ 𝑊 ) |
| 67 | 65 66 | sseqtrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) ∧ 𝑧 ∈ 𝑤 ) → ∪ ( 𝑓 ‘ 𝑧 ) ⊆ ( 𝑋 × 𝑌 ) ) |
| 68 | 67 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ∀ 𝑧 ∈ 𝑤 ∪ ( 𝑓 ‘ 𝑧 ) ⊆ ( 𝑋 × 𝑌 ) ) |
| 69 | iunss | ⊢ ( ∪ 𝑧 ∈ 𝑤 ∪ ( 𝑓 ‘ 𝑧 ) ⊆ ( 𝑋 × 𝑌 ) ↔ ∀ 𝑧 ∈ 𝑤 ∪ ( 𝑓 ‘ 𝑧 ) ⊆ ( 𝑋 × 𝑌 ) ) | |
| 70 | 68 69 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ∪ 𝑧 ∈ 𝑤 ∪ ( 𝑓 ‘ 𝑧 ) ⊆ ( 𝑋 × 𝑌 ) ) |
| 71 | 60 70 | eqssd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ( 𝑋 × 𝑌 ) = ∪ 𝑧 ∈ 𝑤 ∪ ( 𝑓 ‘ 𝑧 ) ) |
| 72 | iuncom4 | ⊢ ∪ 𝑧 ∈ 𝑤 ∪ ( 𝑓 ‘ 𝑧 ) = ∪ ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) | |
| 73 | 71 72 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ( 𝑋 × 𝑌 ) = ∪ ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ) |
| 74 | unieq | ⊢ ( 𝑣 = ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) → ∪ 𝑣 = ∪ ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ) | |
| 75 | 74 | rspceeqv | ⊢ ( ( ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ∈ ( 𝒫 𝑊 ∩ Fin ) ∧ ( 𝑋 × 𝑌 ) = ∪ ∪ 𝑧 ∈ 𝑤 ( 𝑓 ‘ 𝑧 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑌 ) = ∪ 𝑣 ) |
| 76 | 44 73 75 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ ( 𝑌 = ∪ 𝑤 ∧ ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑌 ) = ∪ 𝑣 ) |
| 77 | 76 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ 𝑌 = ∪ 𝑤 ) → ( ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑌 ) = ∪ 𝑣 ) ) |
| 78 | 77 | exlimdv | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) ∧ 𝑌 = ∪ 𝑤 ) → ( ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑌 ) = ∪ 𝑣 ) ) |
| 79 | 78 | expimpd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ) → ( ( 𝑌 = ∪ 𝑤 ∧ ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑌 ) = ∪ 𝑣 ) ) |
| 80 | 79 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑤 ∈ ( 𝒫 𝑆 ∩ Fin ) ( 𝑌 = ∪ 𝑤 ∧ ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ ( 𝒫 𝑊 ∩ Fin ) ∧ ∀ 𝑢 ∈ 𝑤 ( 𝑋 × 𝑢 ) ⊆ ∪ ( 𝑓 ‘ 𝑢 ) ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑌 ) = ∪ 𝑣 ) ) |
| 81 | 17 80 | mpd | ⊢ ( 𝜑 → ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑌 ) = ∪ 𝑣 ) |