This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If R is a subclass of S and S is transitive, then the transitive closure of R is a subclass of S . (Contributed by Scott Fenton, 20-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ttrclss | ⊢ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → t++ 𝑅 ⊆ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suceq | ⊢ ( 𝑚 = ∅ → suc 𝑚 = suc ∅ ) | |
| 2 | suceq | ⊢ ( suc 𝑚 = suc ∅ → suc suc 𝑚 = suc suc ∅ ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑚 = ∅ → suc suc 𝑚 = suc suc ∅ ) |
| 4 | 3 | fneq2d | ⊢ ( 𝑚 = ∅ → ( 𝑓 Fn suc suc 𝑚 ↔ 𝑓 Fn suc suc ∅ ) ) |
| 5 | df-1o | ⊢ 1o = suc ∅ | |
| 6 | 1 5 | eqtr4di | ⊢ ( 𝑚 = ∅ → suc 𝑚 = 1o ) |
| 7 | 6 | fveqeq2d | ⊢ ( 𝑚 = ∅ → ( ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ↔ ( 𝑓 ‘ 1o ) = 𝑦 ) ) |
| 8 | 7 | anbi2d | ⊢ ( 𝑚 = ∅ → ( ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ) ) |
| 9 | df1o2 | ⊢ 1o = { ∅ } | |
| 10 | 6 9 | eqtrdi | ⊢ ( 𝑚 = ∅ → suc 𝑚 = { ∅ } ) |
| 11 | 10 | raleqdv | ⊢ ( 𝑚 = ∅ → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ { ∅ } ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
| 12 | 0ex | ⊢ ∅ ∈ V | |
| 13 | fveq2 | ⊢ ( 𝑎 = ∅ → ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ ∅ ) ) | |
| 14 | suceq | ⊢ ( 𝑎 = ∅ → suc 𝑎 = suc ∅ ) | |
| 15 | 14 5 | eqtr4di | ⊢ ( 𝑎 = ∅ → suc 𝑎 = 1o ) |
| 16 | 15 | fveq2d | ⊢ ( 𝑎 = ∅ → ( 𝑓 ‘ suc 𝑎 ) = ( 𝑓 ‘ 1o ) ) |
| 17 | 13 16 | breq12d | ⊢ ( 𝑎 = ∅ → ( ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) ) |
| 18 | 12 17 | ralsn | ⊢ ( ∀ 𝑎 ∈ { ∅ } ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) |
| 19 | 11 18 | bitrdi | ⊢ ( 𝑚 = ∅ → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) ) |
| 20 | 4 8 19 | 3anbi123d | ⊢ ( 𝑚 = ∅ → ( ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc suc ∅ ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ∧ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) ) ) |
| 21 | 20 | exbidv | ⊢ ( 𝑚 = ∅ → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc suc ∅ ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ∧ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) ) ) |
| 22 | 21 | imbi1d | ⊢ ( 𝑚 = ∅ → ( ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc suc ∅ ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ∧ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) → 𝑥 𝑆 𝑦 ) ) ) |
| 23 | 22 | albidv | ⊢ ( 𝑚 = ∅ → ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc ∅ ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ∧ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) → 𝑥 𝑆 𝑦 ) ) ) |
| 24 | 23 | imbi2d | ⊢ ( 𝑚 = ∅ → ( ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ↔ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc ∅ ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ∧ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) → 𝑥 𝑆 𝑦 ) ) ) ) |
| 25 | suceq | ⊢ ( 𝑚 = 𝑖 → suc 𝑚 = suc 𝑖 ) | |
| 26 | suceq | ⊢ ( suc 𝑚 = suc 𝑖 → suc suc 𝑚 = suc suc 𝑖 ) | |
| 27 | 25 26 | syl | ⊢ ( 𝑚 = 𝑖 → suc suc 𝑚 = suc suc 𝑖 ) |
| 28 | 27 | fneq2d | ⊢ ( 𝑚 = 𝑖 → ( 𝑓 Fn suc suc 𝑚 ↔ 𝑓 Fn suc suc 𝑖 ) ) |
| 29 | 25 | fveqeq2d | ⊢ ( 𝑚 = 𝑖 → ( ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ↔ ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ) ) |
| 30 | 29 | anbi2d | ⊢ ( 𝑚 = 𝑖 → ( ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ) ) ) |
| 31 | 25 | raleqdv | ⊢ ( 𝑚 = 𝑖 → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
| 32 | fveq2 | ⊢ ( 𝑎 = 𝑏 → ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ 𝑏 ) ) | |
| 33 | suceq | ⊢ ( 𝑎 = 𝑏 → suc 𝑎 = suc 𝑏 ) | |
| 34 | 33 | fveq2d | ⊢ ( 𝑎 = 𝑏 → ( 𝑓 ‘ suc 𝑎 ) = ( 𝑓 ‘ suc 𝑏 ) ) |
| 35 | 32 34 | breq12d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ 𝑏 ) 𝑅 ( 𝑓 ‘ suc 𝑏 ) ) ) |
| 36 | 35 | cbvralvw | ⊢ ( ∀ 𝑎 ∈ suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑏 ∈ suc 𝑖 ( 𝑓 ‘ 𝑏 ) 𝑅 ( 𝑓 ‘ suc 𝑏 ) ) |
| 37 | 31 36 | bitrdi | ⊢ ( 𝑚 = 𝑖 → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑏 ∈ suc 𝑖 ( 𝑓 ‘ 𝑏 ) 𝑅 ( 𝑓 ‘ suc 𝑏 ) ) ) |
| 38 | 28 30 37 | 3anbi123d | ⊢ ( 𝑚 = 𝑖 → ( ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑓 ‘ 𝑏 ) 𝑅 ( 𝑓 ‘ suc 𝑏 ) ) ) ) |
| 39 | 38 | exbidv | ⊢ ( 𝑚 = 𝑖 → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑓 ‘ 𝑏 ) 𝑅 ( 𝑓 ‘ suc 𝑏 ) ) ) ) |
| 40 | fneq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 Fn suc suc 𝑖 ↔ 𝑔 Fn suc suc 𝑖 ) ) | |
| 41 | fveq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ ∅ ) = ( 𝑔 ‘ ∅ ) ) | |
| 42 | 41 | eqeq1d | ⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ ∅ ) = 𝑥 ↔ ( 𝑔 ‘ ∅ ) = 𝑥 ) ) |
| 43 | fveq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ suc 𝑖 ) = ( 𝑔 ‘ suc 𝑖 ) ) | |
| 44 | 43 | eqeq1d | ⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ↔ ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ) ) |
| 45 | 42 44 | anbi12d | ⊢ ( 𝑓 = 𝑔 → ( ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ) ↔ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ) ) ) |
| 46 | fveq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ 𝑏 ) = ( 𝑔 ‘ 𝑏 ) ) | |
| 47 | fveq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ suc 𝑏 ) = ( 𝑔 ‘ suc 𝑏 ) ) | |
| 48 | 46 47 | breq12d | ⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ 𝑏 ) 𝑅 ( 𝑓 ‘ suc 𝑏 ) ↔ ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) |
| 49 | 48 | ralbidv | ⊢ ( 𝑓 = 𝑔 → ( ∀ 𝑏 ∈ suc 𝑖 ( 𝑓 ‘ 𝑏 ) 𝑅 ( 𝑓 ‘ suc 𝑏 ) ↔ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) |
| 50 | 40 45 49 | 3anbi123d | ⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 Fn suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑓 ‘ 𝑏 ) 𝑅 ( 𝑓 ‘ suc 𝑏 ) ) ↔ ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
| 51 | 50 | cbvexvw | ⊢ ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑓 ‘ 𝑏 ) 𝑅 ( 𝑓 ‘ suc 𝑏 ) ) ↔ ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) |
| 52 | 39 51 | bitrdi | ⊢ ( 𝑚 = 𝑖 → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
| 53 | 52 | imbi1d | ⊢ ( 𝑚 = 𝑖 → ( ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑦 ) ) ) |
| 54 | 53 | albidv | ⊢ ( 𝑚 = 𝑖 → ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ∀ 𝑦 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑦 ) ) ) |
| 55 | eqeq2 | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ↔ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ) | |
| 56 | 55 | anbi2d | ⊢ ( 𝑦 = 𝑧 → ( ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ) ↔ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ) ) |
| 57 | 56 | 3anbi2d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ↔ ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
| 58 | 57 | exbidv | ⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ↔ ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
| 59 | breq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑥 𝑆 𝑦 ↔ 𝑥 𝑆 𝑧 ) ) | |
| 60 | 58 59 | imbi12d | ⊢ ( 𝑦 = 𝑧 → ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑦 ) ↔ ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑧 ) ) ) |
| 61 | 60 | cbvalvw | ⊢ ( ∀ 𝑦 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑦 ) ↔ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑧 ) ) |
| 62 | 54 61 | bitrdi | ⊢ ( 𝑚 = 𝑖 → ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑧 ) ) ) |
| 63 | 62 | imbi2d | ⊢ ( 𝑚 = 𝑖 → ( ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ↔ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑧 ) ) ) ) |
| 64 | suceq | ⊢ ( 𝑚 = suc 𝑖 → suc 𝑚 = suc suc 𝑖 ) | |
| 65 | suceq | ⊢ ( suc 𝑚 = suc suc 𝑖 → suc suc 𝑚 = suc suc suc 𝑖 ) | |
| 66 | 64 65 | syl | ⊢ ( 𝑚 = suc 𝑖 → suc suc 𝑚 = suc suc suc 𝑖 ) |
| 67 | 66 | fneq2d | ⊢ ( 𝑚 = suc 𝑖 → ( 𝑓 Fn suc suc 𝑚 ↔ 𝑓 Fn suc suc suc 𝑖 ) ) |
| 68 | 64 | fveqeq2d | ⊢ ( 𝑚 = suc 𝑖 → ( ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ↔ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ) |
| 69 | 68 | anbi2d | ⊢ ( 𝑚 = suc 𝑖 → ( ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ) ) |
| 70 | 64 | raleqdv | ⊢ ( 𝑚 = suc 𝑖 → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
| 71 | 67 69 70 | 3anbi123d | ⊢ ( 𝑚 = suc 𝑖 → ( ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
| 72 | 71 | exbidv | ⊢ ( 𝑚 = suc 𝑖 → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
| 73 | 72 | imbi1d | ⊢ ( 𝑚 = suc 𝑖 → ( ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ) |
| 74 | 73 | albidv | ⊢ ( 𝑚 = suc 𝑖 → ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ) |
| 75 | 74 | imbi2d | ⊢ ( 𝑚 = suc 𝑖 → ( ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ↔ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ) ) |
| 76 | suceq | ⊢ ( 𝑚 = 𝑛 → suc 𝑚 = suc 𝑛 ) | |
| 77 | suceq | ⊢ ( suc 𝑚 = suc 𝑛 → suc suc 𝑚 = suc suc 𝑛 ) | |
| 78 | 76 77 | syl | ⊢ ( 𝑚 = 𝑛 → suc suc 𝑚 = suc suc 𝑛 ) |
| 79 | 78 | fneq2d | ⊢ ( 𝑚 = 𝑛 → ( 𝑓 Fn suc suc 𝑚 ↔ 𝑓 Fn suc suc 𝑛 ) ) |
| 80 | 76 | fveqeq2d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ↔ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ) |
| 81 | 80 | anbi2d | ⊢ ( 𝑚 = 𝑛 → ( ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ) ) |
| 82 | 76 | raleqdv | ⊢ ( 𝑚 = 𝑛 → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
| 83 | 79 81 82 | 3anbi123d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
| 84 | 83 | exbidv | ⊢ ( 𝑚 = 𝑛 → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
| 85 | 84 | imbi1d | ⊢ ( 𝑚 = 𝑛 → ( ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ) |
| 86 | 85 | albidv | ⊢ ( 𝑚 = 𝑛 → ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ) |
| 87 | 86 | imbi2d | ⊢ ( 𝑚 = 𝑛 → ( ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ↔ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ) ) |
| 88 | breq12 | ⊢ ( ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) → ( ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ↔ 𝑥 𝑅 𝑦 ) ) | |
| 89 | 88 | biimpa | ⊢ ( ( ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ∧ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) → 𝑥 𝑅 𝑦 ) |
| 90 | 89 | 3adant1 | ⊢ ( ( 𝑓 Fn suc suc ∅ ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ∧ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) → 𝑥 𝑅 𝑦 ) |
| 91 | ssbr | ⊢ ( 𝑅 ⊆ 𝑆 → ( 𝑥 𝑅 𝑦 → 𝑥 𝑆 𝑦 ) ) | |
| 92 | 91 | adantr | ⊢ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ( 𝑥 𝑅 𝑦 → 𝑥 𝑆 𝑦 ) ) |
| 93 | 90 92 | syl5 | ⊢ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ( ( 𝑓 Fn suc suc ∅ ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ∧ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) → 𝑥 𝑆 𝑦 ) ) |
| 94 | 93 | exlimdv | ⊢ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ( ∃ 𝑓 ( 𝑓 Fn suc suc ∅ ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ∧ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) → 𝑥 𝑆 𝑦 ) ) |
| 95 | 94 | alrimiv | ⊢ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc ∅ ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 1o ) = 𝑦 ) ∧ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) → 𝑥 𝑆 𝑦 ) ) |
| 96 | fvex | ⊢ ( 𝑓 ‘ suc 𝑖 ) ∈ V | |
| 97 | eqeq2 | ⊢ ( 𝑧 = ( 𝑓 ‘ suc 𝑖 ) → ( ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ↔ ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ) | |
| 98 | 97 | anbi2d | ⊢ ( 𝑧 = ( 𝑓 ‘ suc 𝑖 ) → ( ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ↔ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ) ) |
| 99 | 98 | 3anbi2d | ⊢ ( 𝑧 = ( 𝑓 ‘ suc 𝑖 ) → ( ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ↔ ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
| 100 | 99 | exbidv | ⊢ ( 𝑧 = ( 𝑓 ‘ suc 𝑖 ) → ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ↔ ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
| 101 | breq2 | ⊢ ( 𝑧 = ( 𝑓 ‘ suc 𝑖 ) → ( 𝑥 𝑆 𝑧 ↔ 𝑥 𝑆 ( 𝑓 ‘ suc 𝑖 ) ) ) | |
| 102 | 100 101 | imbi12d | ⊢ ( 𝑧 = ( 𝑓 ‘ suc 𝑖 ) → ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑧 ) ↔ ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 ( 𝑓 ‘ suc 𝑖 ) ) ) ) |
| 103 | 96 102 | spcv | ⊢ ( ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑧 ) → ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 ( 𝑓 ‘ suc 𝑖 ) ) ) |
| 104 | simpr1 | ⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → 𝑓 Fn suc suc suc 𝑖 ) | |
| 105 | sssucid | ⊢ suc suc 𝑖 ⊆ suc suc suc 𝑖 | |
| 106 | fnssres | ⊢ ( ( 𝑓 Fn suc suc suc 𝑖 ∧ suc suc 𝑖 ⊆ suc suc suc 𝑖 ) → ( 𝑓 ↾ suc suc 𝑖 ) Fn suc suc 𝑖 ) | |
| 107 | 104 105 106 | sylancl | ⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ↾ suc suc 𝑖 ) Fn suc suc 𝑖 ) |
| 108 | peano2 | ⊢ ( 𝑖 ∈ ω → suc 𝑖 ∈ ω ) | |
| 109 | 108 | ad2antrr | ⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → suc 𝑖 ∈ ω ) |
| 110 | nnord | ⊢ ( suc 𝑖 ∈ ω → Ord suc 𝑖 ) | |
| 111 | 109 110 | syl | ⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → Ord suc 𝑖 ) |
| 112 | 0elsuc | ⊢ ( Ord suc 𝑖 → ∅ ∈ suc suc 𝑖 ) | |
| 113 | 111 112 | syl | ⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ∅ ∈ suc suc 𝑖 ) |
| 114 | 113 | fvresd | ⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ ∅ ) = ( 𝑓 ‘ ∅ ) ) |
| 115 | simpr2l | ⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ ∅ ) = 𝑥 ) | |
| 116 | 114 115 | eqtrd | ⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ ∅ ) = 𝑥 ) |
| 117 | vex | ⊢ 𝑖 ∈ V | |
| 118 | 117 | sucex | ⊢ suc 𝑖 ∈ V |
| 119 | 118 | sucid | ⊢ suc 𝑖 ∈ suc suc 𝑖 |
| 120 | fvres | ⊢ ( suc 𝑖 ∈ suc suc 𝑖 → ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) | |
| 121 | 119 120 | mp1i | ⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) |
| 122 | simplr3 | ⊢ ( ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑏 ∈ suc 𝑖 ) → ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) | |
| 123 | elelsuc | ⊢ ( 𝑏 ∈ suc 𝑖 → 𝑏 ∈ suc suc 𝑖 ) | |
| 124 | 123 | adantl | ⊢ ( ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑏 ∈ suc 𝑖 ) → 𝑏 ∈ suc suc 𝑖 ) |
| 125 | 35 122 124 | rspcdva | ⊢ ( ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑏 ∈ suc 𝑖 ) → ( 𝑓 ‘ 𝑏 ) 𝑅 ( 𝑓 ‘ suc 𝑏 ) ) |
| 126 | 124 | fvresd | ⊢ ( ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑏 ∈ suc 𝑖 ) → ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ 𝑏 ) = ( 𝑓 ‘ 𝑏 ) ) |
| 127 | ordsucelsuc | ⊢ ( Ord suc 𝑖 → ( 𝑏 ∈ suc 𝑖 ↔ suc 𝑏 ∈ suc suc 𝑖 ) ) | |
| 128 | 111 127 | syl | ⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑏 ∈ suc 𝑖 ↔ suc 𝑏 ∈ suc suc 𝑖 ) ) |
| 129 | 128 | biimpa | ⊢ ( ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑏 ∈ suc 𝑖 ) → suc 𝑏 ∈ suc suc 𝑖 ) |
| 130 | 129 | fvresd | ⊢ ( ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑏 ∈ suc 𝑖 ) → ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑏 ) = ( 𝑓 ‘ suc 𝑏 ) ) |
| 131 | 125 126 130 | 3brtr4d | ⊢ ( ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑏 ∈ suc 𝑖 ) → ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ 𝑏 ) 𝑅 ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑏 ) ) |
| 132 | 131 | ralrimiva | ⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ∀ 𝑏 ∈ suc 𝑖 ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ 𝑏 ) 𝑅 ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑏 ) ) |
| 133 | vex | ⊢ 𝑓 ∈ V | |
| 134 | 133 | resex | ⊢ ( 𝑓 ↾ suc suc 𝑖 ) ∈ V |
| 135 | fneq1 | ⊢ ( 𝑔 = ( 𝑓 ↾ suc suc 𝑖 ) → ( 𝑔 Fn suc suc 𝑖 ↔ ( 𝑓 ↾ suc suc 𝑖 ) Fn suc suc 𝑖 ) ) | |
| 136 | fveq1 | ⊢ ( 𝑔 = ( 𝑓 ↾ suc suc 𝑖 ) → ( 𝑔 ‘ ∅ ) = ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ ∅ ) ) | |
| 137 | 136 | eqeq1d | ⊢ ( 𝑔 = ( 𝑓 ↾ suc suc 𝑖 ) → ( ( 𝑔 ‘ ∅ ) = 𝑥 ↔ ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ ∅ ) = 𝑥 ) ) |
| 138 | fveq1 | ⊢ ( 𝑔 = ( 𝑓 ↾ suc suc 𝑖 ) → ( 𝑔 ‘ suc 𝑖 ) = ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑖 ) ) | |
| 139 | 138 | eqeq1d | ⊢ ( 𝑔 = ( 𝑓 ↾ suc suc 𝑖 ) → ( ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ↔ ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ) |
| 140 | 137 139 | anbi12d | ⊢ ( 𝑔 = ( 𝑓 ↾ suc suc 𝑖 ) → ( ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ↔ ( ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ ∅ ) = 𝑥 ∧ ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ) ) |
| 141 | fveq1 | ⊢ ( 𝑔 = ( 𝑓 ↾ suc suc 𝑖 ) → ( 𝑔 ‘ 𝑏 ) = ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ 𝑏 ) ) | |
| 142 | fveq1 | ⊢ ( 𝑔 = ( 𝑓 ↾ suc suc 𝑖 ) → ( 𝑔 ‘ suc 𝑏 ) = ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑏 ) ) | |
| 143 | 141 142 | breq12d | ⊢ ( 𝑔 = ( 𝑓 ↾ suc suc 𝑖 ) → ( ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ↔ ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ 𝑏 ) 𝑅 ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑏 ) ) ) |
| 144 | 143 | ralbidv | ⊢ ( 𝑔 = ( 𝑓 ↾ suc suc 𝑖 ) → ( ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ↔ ∀ 𝑏 ∈ suc 𝑖 ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ 𝑏 ) 𝑅 ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑏 ) ) ) |
| 145 | 135 140 144 | 3anbi123d | ⊢ ( 𝑔 = ( 𝑓 ↾ suc suc 𝑖 ) → ( ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ↔ ( ( 𝑓 ↾ suc suc 𝑖 ) Fn suc suc 𝑖 ∧ ( ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ ∅ ) = 𝑥 ∧ ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ 𝑏 ) 𝑅 ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑏 ) ) ) ) |
| 146 | 134 145 | spcev | ⊢ ( ( ( 𝑓 ↾ suc suc 𝑖 ) Fn suc suc 𝑖 ∧ ( ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ ∅ ) = 𝑥 ∧ ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ 𝑏 ) 𝑅 ( ( 𝑓 ↾ suc suc 𝑖 ) ‘ suc 𝑏 ) ) → ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) |
| 147 | 107 116 121 132 146 | syl121anc | ⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) ) |
| 148 | simplrl | ⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → 𝑅 ⊆ 𝑆 ) | |
| 149 | simpr3 | ⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) | |
| 150 | ssbr | ⊢ ( 𝑅 ⊆ 𝑆 → ( ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) → ( 𝑓 ‘ 𝑎 ) 𝑆 ( 𝑓 ‘ suc 𝑎 ) ) ) | |
| 151 | 150 | ralimdv | ⊢ ( 𝑅 ⊆ 𝑆 → ( ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) → ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑆 ( 𝑓 ‘ suc 𝑎 ) ) ) |
| 152 | 148 149 151 | sylc | ⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑆 ( 𝑓 ‘ suc 𝑎 ) ) |
| 153 | fveq2 | ⊢ ( 𝑎 = suc 𝑖 → ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ suc 𝑖 ) ) | |
| 154 | suceq | ⊢ ( 𝑎 = suc 𝑖 → suc 𝑎 = suc suc 𝑖 ) | |
| 155 | 154 | fveq2d | ⊢ ( 𝑎 = suc 𝑖 → ( 𝑓 ‘ suc 𝑎 ) = ( 𝑓 ‘ suc suc 𝑖 ) ) |
| 156 | 153 155 | breq12d | ⊢ ( 𝑎 = suc 𝑖 → ( ( 𝑓 ‘ 𝑎 ) 𝑆 ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ suc 𝑖 ) 𝑆 ( 𝑓 ‘ suc suc 𝑖 ) ) ) |
| 157 | 156 | rspcv | ⊢ ( suc 𝑖 ∈ suc suc 𝑖 → ( ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑆 ( 𝑓 ‘ suc 𝑎 ) → ( 𝑓 ‘ suc 𝑖 ) 𝑆 ( 𝑓 ‘ suc suc 𝑖 ) ) ) |
| 158 | 119 152 157 | mpsyl | ⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ suc 𝑖 ) 𝑆 ( 𝑓 ‘ suc suc 𝑖 ) ) |
| 159 | simpr2r | ⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) | |
| 160 | 158 159 | breqtrd | ⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ suc 𝑖 ) 𝑆 𝑦 ) |
| 161 | breq1 | ⊢ ( 𝑧 = ( 𝑓 ‘ suc 𝑖 ) → ( 𝑧 𝑆 𝑦 ↔ ( 𝑓 ‘ suc 𝑖 ) 𝑆 𝑦 ) ) | |
| 162 | 101 161 | anbi12d | ⊢ ( 𝑧 = ( 𝑓 ‘ suc 𝑖 ) → ( ( 𝑥 𝑆 𝑧 ∧ 𝑧 𝑆 𝑦 ) ↔ ( 𝑥 𝑆 ( 𝑓 ‘ suc 𝑖 ) ∧ ( 𝑓 ‘ suc 𝑖 ) 𝑆 𝑦 ) ) ) |
| 163 | 96 162 | spcev | ⊢ ( ( 𝑥 𝑆 ( 𝑓 ‘ suc 𝑖 ) ∧ ( 𝑓 ‘ suc 𝑖 ) 𝑆 𝑦 ) → ∃ 𝑧 ( 𝑥 𝑆 𝑧 ∧ 𝑧 𝑆 𝑦 ) ) |
| 164 | vex | ⊢ 𝑥 ∈ V | |
| 165 | vex | ⊢ 𝑦 ∈ V | |
| 166 | 164 165 | brco | ⊢ ( 𝑥 ( 𝑆 ∘ 𝑆 ) 𝑦 ↔ ∃ 𝑧 ( 𝑥 𝑆 𝑧 ∧ 𝑧 𝑆 𝑦 ) ) |
| 167 | 163 166 | sylibr | ⊢ ( ( 𝑥 𝑆 ( 𝑓 ‘ suc 𝑖 ) ∧ ( 𝑓 ‘ suc 𝑖 ) 𝑆 𝑦 ) → 𝑥 ( 𝑆 ∘ 𝑆 ) 𝑦 ) |
| 168 | simplrr | ⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) | |
| 169 | 168 | ssbrd | ⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑥 ( 𝑆 ∘ 𝑆 ) 𝑦 → 𝑥 𝑆 𝑦 ) ) |
| 170 | 167 169 | syl5 | ⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( ( 𝑥 𝑆 ( 𝑓 ‘ suc 𝑖 ) ∧ ( 𝑓 ‘ suc 𝑖 ) 𝑆 𝑦 ) → 𝑥 𝑆 𝑦 ) ) |
| 171 | 160 170 | mpan2d | ⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑥 𝑆 ( 𝑓 ‘ suc 𝑖 ) → 𝑥 𝑆 𝑦 ) ) |
| 172 | 147 171 | embantd | ⊢ ( ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) ∧ ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 ( 𝑓 ‘ suc 𝑖 ) ) → 𝑥 𝑆 𝑦 ) ) |
| 173 | 172 | ex | ⊢ ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) → ( ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 ( 𝑓 ‘ suc 𝑖 ) ) → 𝑥 𝑆 𝑦 ) ) ) |
| 174 | 173 | com23 | ⊢ ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) → ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 ( 𝑓 ‘ suc 𝑖 ) ) → ( ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ) |
| 175 | 103 174 | syl5 | ⊢ ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) → ( ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑧 ) → ( ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ) |
| 176 | 175 | 3impia | ⊢ ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ∧ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑧 ) ) → ( ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) |
| 177 | 176 | exlimdv | ⊢ ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ∧ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑧 ) ) → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) |
| 178 | 177 | alrimiv | ⊢ ( ( 𝑖 ∈ ω ∧ ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ∧ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑧 ) ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) |
| 179 | 178 | 3exp | ⊢ ( 𝑖 ∈ ω → ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ( ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑧 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ) ) |
| 180 | 179 | a2d | ⊢ ( 𝑖 ∈ ω → ( ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑖 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑥 ∧ ( 𝑔 ‘ suc 𝑖 ) = 𝑧 ) ∧ ∀ 𝑏 ∈ suc 𝑖 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc 𝑏 ) ) → 𝑥 𝑆 𝑧 ) ) → ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑖 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc suc 𝑖 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc suc 𝑖 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ) ) |
| 181 | 24 63 75 87 95 180 | finds | ⊢ ( 𝑛 ∈ ω → ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ) |
| 182 | 181 | com12 | ⊢ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ( 𝑛 ∈ ω → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) ) |
| 183 | 182 | ralrimiv | ⊢ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑛 ∈ ω ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) |
| 184 | ralcom4 | ⊢ ( ∀ 𝑛 ∈ ω ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ∀ 𝑦 ∀ 𝑛 ∈ ω ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) | |
| 185 | r19.23v | ⊢ ( ∀ 𝑛 ∈ ω ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ( ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) | |
| 186 | 185 | albii | ⊢ ( ∀ 𝑦 ∀ 𝑛 ∈ ω ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ∀ 𝑦 ( ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) |
| 187 | 184 186 | bitri | ⊢ ( ∀ 𝑛 ∈ ω ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ∀ 𝑦 ( ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) |
| 188 | 183 187 | sylib | ⊢ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑦 ( ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ) |
| 189 | brttrcl2 | ⊢ ( 𝑥 t++ 𝑅 𝑦 ↔ ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) | |
| 190 | df-br | ⊢ ( 𝑥 t++ 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 ) | |
| 191 | 189 190 | bitr3i | ⊢ ( ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 ) |
| 192 | df-br | ⊢ ( 𝑥 𝑆 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ) | |
| 193 | 191 192 | imbi12i | ⊢ ( ( ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 → 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ) ) |
| 194 | 193 | albii | ⊢ ( ∀ 𝑦 ( ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 𝑆 𝑦 ) ↔ ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 → 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ) ) |
| 195 | 188 194 | sylib | ⊢ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 → 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ) ) |
| 196 | 195 | alrimiv | ⊢ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 → 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ) ) |
| 197 | relttrcl | ⊢ Rel t++ 𝑅 | |
| 198 | ssrel | ⊢ ( Rel t++ 𝑅 → ( t++ 𝑅 ⊆ 𝑆 ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 → 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ) ) ) | |
| 199 | 197 198 | ax-mp | ⊢ ( t++ 𝑅 ⊆ 𝑆 ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ t++ 𝑅 → 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ) ) |
| 200 | 196 199 | sylibr | ⊢ ( ( 𝑅 ⊆ 𝑆 ∧ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) → t++ 𝑅 ⊆ 𝑆 ) |