This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a transitive closure is the same as the domain of the original class. (Contributed by Scott Fenton, 26-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmttrcl | ⊢ dom t++ 𝑅 = dom 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ttrcl | ⊢ t++ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } | |
| 2 | 1 | dmeqi | ⊢ dom t++ 𝑅 = dom { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } |
| 3 | dmopab | ⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } = { 𝑥 ∣ ∃ 𝑦 ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } | |
| 4 | 2 3 | eqtri | ⊢ dom t++ 𝑅 = { 𝑥 ∣ ∃ 𝑦 ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } |
| 5 | simpr2l | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ ∅ ) = 𝑥 ) | |
| 6 | fveq2 | ⊢ ( 𝑎 = ∅ → ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ ∅ ) ) | |
| 7 | suceq | ⊢ ( 𝑎 = ∅ → suc 𝑎 = suc ∅ ) | |
| 8 | df-1o | ⊢ 1o = suc ∅ | |
| 9 | 7 8 | eqtr4di | ⊢ ( 𝑎 = ∅ → suc 𝑎 = 1o ) |
| 10 | 9 | fveq2d | ⊢ ( 𝑎 = ∅ → ( 𝑓 ‘ suc 𝑎 ) = ( 𝑓 ‘ 1o ) ) |
| 11 | 6 10 | breq12d | ⊢ ( 𝑎 = ∅ → ( ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) ) |
| 12 | simpr3 | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) | |
| 13 | eldif | ⊢ ( 𝑛 ∈ ( ω ∖ 1o ) ↔ ( 𝑛 ∈ ω ∧ ¬ 𝑛 ∈ 1o ) ) | |
| 14 | 0ex | ⊢ ∅ ∈ V | |
| 15 | nnord | ⊢ ( 𝑛 ∈ ω → Ord 𝑛 ) | |
| 16 | ordelsuc | ⊢ ( ( ∅ ∈ V ∧ Ord 𝑛 ) → ( ∅ ∈ 𝑛 ↔ suc ∅ ⊆ 𝑛 ) ) | |
| 17 | 14 15 16 | sylancr | ⊢ ( 𝑛 ∈ ω → ( ∅ ∈ 𝑛 ↔ suc ∅ ⊆ 𝑛 ) ) |
| 18 | 8 | sseq1i | ⊢ ( 1o ⊆ 𝑛 ↔ suc ∅ ⊆ 𝑛 ) |
| 19 | 1on | ⊢ 1o ∈ On | |
| 20 | 19 | onordi | ⊢ Ord 1o |
| 21 | ordtri1 | ⊢ ( ( Ord 1o ∧ Ord 𝑛 ) → ( 1o ⊆ 𝑛 ↔ ¬ 𝑛 ∈ 1o ) ) | |
| 22 | 20 15 21 | sylancr | ⊢ ( 𝑛 ∈ ω → ( 1o ⊆ 𝑛 ↔ ¬ 𝑛 ∈ 1o ) ) |
| 23 | 18 22 | bitr3id | ⊢ ( 𝑛 ∈ ω → ( suc ∅ ⊆ 𝑛 ↔ ¬ 𝑛 ∈ 1o ) ) |
| 24 | 17 23 | bitr2d | ⊢ ( 𝑛 ∈ ω → ( ¬ 𝑛 ∈ 1o ↔ ∅ ∈ 𝑛 ) ) |
| 25 | 24 | biimpa | ⊢ ( ( 𝑛 ∈ ω ∧ ¬ 𝑛 ∈ 1o ) → ∅ ∈ 𝑛 ) |
| 26 | 13 25 | sylbi | ⊢ ( 𝑛 ∈ ( ω ∖ 1o ) → ∅ ∈ 𝑛 ) |
| 27 | 26 | adantr | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ∅ ∈ 𝑛 ) |
| 28 | 11 12 27 | rspcdva | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) |
| 29 | 5 28 | eqbrtrrd | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → 𝑥 𝑅 ( 𝑓 ‘ 1o ) ) |
| 30 | vex | ⊢ 𝑥 ∈ V | |
| 31 | fvex | ⊢ ( 𝑓 ‘ 1o ) ∈ V | |
| 32 | 30 31 | breldm | ⊢ ( 𝑥 𝑅 ( 𝑓 ‘ 1o ) → 𝑥 ∈ dom 𝑅 ) |
| 33 | 29 32 | syl | ⊢ ( ( 𝑛 ∈ ( ω ∖ 1o ) ∧ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) → 𝑥 ∈ dom 𝑅 ) |
| 34 | 33 | ex | ⊢ ( 𝑛 ∈ ( ω ∖ 1o ) → ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 ∈ dom 𝑅 ) ) |
| 35 | 34 | exlimdv | ⊢ ( 𝑛 ∈ ( ω ∖ 1o ) → ( ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 ∈ dom 𝑅 ) ) |
| 36 | 35 | rexlimiv | ⊢ ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 ∈ dom 𝑅 ) |
| 37 | 36 | exlimiv | ⊢ ( ∃ 𝑦 ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) → 𝑥 ∈ dom 𝑅 ) |
| 38 | 37 | abssi | ⊢ { 𝑥 ∣ ∃ 𝑦 ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } ⊆ dom 𝑅 |
| 39 | 4 38 | eqsstri | ⊢ dom t++ 𝑅 ⊆ dom 𝑅 |
| 40 | dmresv | ⊢ dom ( 𝑅 ↾ V ) = dom 𝑅 | |
| 41 | relres | ⊢ Rel ( 𝑅 ↾ V ) | |
| 42 | ssttrcl | ⊢ ( Rel ( 𝑅 ↾ V ) → ( 𝑅 ↾ V ) ⊆ t++ ( 𝑅 ↾ V ) ) | |
| 43 | 41 42 | ax-mp | ⊢ ( 𝑅 ↾ V ) ⊆ t++ ( 𝑅 ↾ V ) |
| 44 | ttrclresv | ⊢ t++ ( 𝑅 ↾ V ) = t++ 𝑅 | |
| 45 | 43 44 | sseqtri | ⊢ ( 𝑅 ↾ V ) ⊆ t++ 𝑅 |
| 46 | dmss | ⊢ ( ( 𝑅 ↾ V ) ⊆ t++ 𝑅 → dom ( 𝑅 ↾ V ) ⊆ dom t++ 𝑅 ) | |
| 47 | 45 46 | ax-mp | ⊢ dom ( 𝑅 ↾ V ) ⊆ dom t++ 𝑅 |
| 48 | 40 47 | eqsstrri | ⊢ dom 𝑅 ⊆ dom t++ 𝑅 |
| 49 | 39 48 | eqssi | ⊢ dom t++ 𝑅 = dom 𝑅 |