This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If R is a subclass of S and S is transitive, then the transitive closure of R is a subclass of S . (Contributed by Scott Fenton, 20-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ttrclss | |- ( ( R C_ S /\ ( S o. S ) C_ S ) -> t++ R C_ S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suceq | |- ( m = (/) -> suc m = suc (/) ) |
|
| 2 | suceq | |- ( suc m = suc (/) -> suc suc m = suc suc (/) ) |
|
| 3 | 1 2 | syl | |- ( m = (/) -> suc suc m = suc suc (/) ) |
| 4 | 3 | fneq2d | |- ( m = (/) -> ( f Fn suc suc m <-> f Fn suc suc (/) ) ) |
| 5 | df-1o | |- 1o = suc (/) |
|
| 6 | 1 5 | eqtr4di | |- ( m = (/) -> suc m = 1o ) |
| 7 | 6 | fveqeq2d | |- ( m = (/) -> ( ( f ` suc m ) = y <-> ( f ` 1o ) = y ) ) |
| 8 | 7 | anbi2d | |- ( m = (/) -> ( ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) <-> ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) ) ) |
| 9 | df1o2 | |- 1o = { (/) } |
|
| 10 | 6 9 | eqtrdi | |- ( m = (/) -> suc m = { (/) } ) |
| 11 | 10 | raleqdv | |- ( m = (/) -> ( A. a e. suc m ( f ` a ) R ( f ` suc a ) <-> A. a e. { (/) } ( f ` a ) R ( f ` suc a ) ) ) |
| 12 | 0ex | |- (/) e. _V |
|
| 13 | fveq2 | |- ( a = (/) -> ( f ` a ) = ( f ` (/) ) ) |
|
| 14 | suceq | |- ( a = (/) -> suc a = suc (/) ) |
|
| 15 | 14 5 | eqtr4di | |- ( a = (/) -> suc a = 1o ) |
| 16 | 15 | fveq2d | |- ( a = (/) -> ( f ` suc a ) = ( f ` 1o ) ) |
| 17 | 13 16 | breq12d | |- ( a = (/) -> ( ( f ` a ) R ( f ` suc a ) <-> ( f ` (/) ) R ( f ` 1o ) ) ) |
| 18 | 12 17 | ralsn | |- ( A. a e. { (/) } ( f ` a ) R ( f ` suc a ) <-> ( f ` (/) ) R ( f ` 1o ) ) |
| 19 | 11 18 | bitrdi | |- ( m = (/) -> ( A. a e. suc m ( f ` a ) R ( f ` suc a ) <-> ( f ` (/) ) R ( f ` 1o ) ) ) |
| 20 | 4 8 19 | 3anbi123d | |- ( m = (/) -> ( ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) <-> ( f Fn suc suc (/) /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) ) ) |
| 21 | 20 | exbidv | |- ( m = (/) -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) <-> E. f ( f Fn suc suc (/) /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) ) ) |
| 22 | 21 | imbi1d | |- ( m = (/) -> ( ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> ( E. f ( f Fn suc suc (/) /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) -> x S y ) ) ) |
| 23 | 22 | albidv | |- ( m = (/) -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y ( E. f ( f Fn suc suc (/) /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) -> x S y ) ) ) |
| 24 | 23 | imbi2d | |- ( m = (/) -> ( ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) <-> ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc (/) /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) -> x S y ) ) ) ) |
| 25 | suceq | |- ( m = i -> suc m = suc i ) |
|
| 26 | suceq | |- ( suc m = suc i -> suc suc m = suc suc i ) |
|
| 27 | 25 26 | syl | |- ( m = i -> suc suc m = suc suc i ) |
| 28 | 27 | fneq2d | |- ( m = i -> ( f Fn suc suc m <-> f Fn suc suc i ) ) |
| 29 | 25 | fveqeq2d | |- ( m = i -> ( ( f ` suc m ) = y <-> ( f ` suc i ) = y ) ) |
| 30 | 29 | anbi2d | |- ( m = i -> ( ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) <-> ( ( f ` (/) ) = x /\ ( f ` suc i ) = y ) ) ) |
| 31 | 25 | raleqdv | |- ( m = i -> ( A. a e. suc m ( f ` a ) R ( f ` suc a ) <-> A. a e. suc i ( f ` a ) R ( f ` suc a ) ) ) |
| 32 | fveq2 | |- ( a = b -> ( f ` a ) = ( f ` b ) ) |
|
| 33 | suceq | |- ( a = b -> suc a = suc b ) |
|
| 34 | 33 | fveq2d | |- ( a = b -> ( f ` suc a ) = ( f ` suc b ) ) |
| 35 | 32 34 | breq12d | |- ( a = b -> ( ( f ` a ) R ( f ` suc a ) <-> ( f ` b ) R ( f ` suc b ) ) ) |
| 36 | 35 | cbvralvw | |- ( A. a e. suc i ( f ` a ) R ( f ` suc a ) <-> A. b e. suc i ( f ` b ) R ( f ` suc b ) ) |
| 37 | 31 36 | bitrdi | |- ( m = i -> ( A. a e. suc m ( f ` a ) R ( f ` suc a ) <-> A. b e. suc i ( f ` b ) R ( f ` suc b ) ) ) |
| 38 | 28 30 37 | 3anbi123d | |- ( m = i -> ( ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) <-> ( f Fn suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc i ) = y ) /\ A. b e. suc i ( f ` b ) R ( f ` suc b ) ) ) ) |
| 39 | 38 | exbidv | |- ( m = i -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) <-> E. f ( f Fn suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc i ) = y ) /\ A. b e. suc i ( f ` b ) R ( f ` suc b ) ) ) ) |
| 40 | fneq1 | |- ( f = g -> ( f Fn suc suc i <-> g Fn suc suc i ) ) |
|
| 41 | fveq1 | |- ( f = g -> ( f ` (/) ) = ( g ` (/) ) ) |
|
| 42 | 41 | eqeq1d | |- ( f = g -> ( ( f ` (/) ) = x <-> ( g ` (/) ) = x ) ) |
| 43 | fveq1 | |- ( f = g -> ( f ` suc i ) = ( g ` suc i ) ) |
|
| 44 | 43 | eqeq1d | |- ( f = g -> ( ( f ` suc i ) = y <-> ( g ` suc i ) = y ) ) |
| 45 | 42 44 | anbi12d | |- ( f = g -> ( ( ( f ` (/) ) = x /\ ( f ` suc i ) = y ) <-> ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) ) ) |
| 46 | fveq1 | |- ( f = g -> ( f ` b ) = ( g ` b ) ) |
|
| 47 | fveq1 | |- ( f = g -> ( f ` suc b ) = ( g ` suc b ) ) |
|
| 48 | 46 47 | breq12d | |- ( f = g -> ( ( f ` b ) R ( f ` suc b ) <-> ( g ` b ) R ( g ` suc b ) ) ) |
| 49 | 48 | ralbidv | |- ( f = g -> ( A. b e. suc i ( f ` b ) R ( f ` suc b ) <-> A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) |
| 50 | 40 45 49 | 3anbi123d | |- ( f = g -> ( ( f Fn suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc i ) = y ) /\ A. b e. suc i ( f ` b ) R ( f ` suc b ) ) <-> ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) ) |
| 51 | 50 | cbvexvw | |- ( E. f ( f Fn suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc i ) = y ) /\ A. b e. suc i ( f ` b ) R ( f ` suc b ) ) <-> E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) |
| 52 | 39 51 | bitrdi | |- ( m = i -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) <-> E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) ) |
| 53 | 52 | imbi1d | |- ( m = i -> ( ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S y ) ) ) |
| 54 | 53 | albidv | |- ( m = i -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S y ) ) ) |
| 55 | eqeq2 | |- ( y = z -> ( ( g ` suc i ) = y <-> ( g ` suc i ) = z ) ) |
|
| 56 | 55 | anbi2d | |- ( y = z -> ( ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) <-> ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) ) ) |
| 57 | 56 | 3anbi2d | |- ( y = z -> ( ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) <-> ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) ) |
| 58 | 57 | exbidv | |- ( y = z -> ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) <-> E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) ) |
| 59 | breq2 | |- ( y = z -> ( x S y <-> x S z ) ) |
|
| 60 | 58 59 | imbi12d | |- ( y = z -> ( ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S y ) <-> ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) ) ) |
| 61 | 60 | cbvalvw | |- ( A. y ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = y ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S y ) <-> A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) ) |
| 62 | 54 61 | bitrdi | |- ( m = i -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) ) ) |
| 63 | 62 | imbi2d | |- ( m = i -> ( ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) <-> ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) ) ) ) |
| 64 | suceq | |- ( m = suc i -> suc m = suc suc i ) |
|
| 65 | suceq | |- ( suc m = suc suc i -> suc suc m = suc suc suc i ) |
|
| 66 | 64 65 | syl | |- ( m = suc i -> suc suc m = suc suc suc i ) |
| 67 | 66 | fneq2d | |- ( m = suc i -> ( f Fn suc suc m <-> f Fn suc suc suc i ) ) |
| 68 | 64 | fveqeq2d | |- ( m = suc i -> ( ( f ` suc m ) = y <-> ( f ` suc suc i ) = y ) ) |
| 69 | 68 | anbi2d | |- ( m = suc i -> ( ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) <-> ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) ) ) |
| 70 | 64 | raleqdv | |- ( m = suc i -> ( A. a e. suc m ( f ` a ) R ( f ` suc a ) <-> A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) |
| 71 | 67 69 70 | 3anbi123d | |- ( m = suc i -> ( ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) <-> ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) ) |
| 72 | 71 | exbidv | |- ( m = suc i -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) <-> E. f ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) ) |
| 73 | 72 | imbi1d | |- ( m = suc i -> ( ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> ( E. f ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) |
| 74 | 73 | albidv | |- ( m = suc i -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y ( E. f ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) |
| 75 | 74 | imbi2d | |- ( m = suc i -> ( ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) <-> ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) ) |
| 76 | suceq | |- ( m = n -> suc m = suc n ) |
|
| 77 | suceq | |- ( suc m = suc n -> suc suc m = suc suc n ) |
|
| 78 | 76 77 | syl | |- ( m = n -> suc suc m = suc suc n ) |
| 79 | 78 | fneq2d | |- ( m = n -> ( f Fn suc suc m <-> f Fn suc suc n ) ) |
| 80 | 76 | fveqeq2d | |- ( m = n -> ( ( f ` suc m ) = y <-> ( f ` suc n ) = y ) ) |
| 81 | 80 | anbi2d | |- ( m = n -> ( ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) <-> ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) ) ) |
| 82 | 76 | raleqdv | |- ( m = n -> ( A. a e. suc m ( f ` a ) R ( f ` suc a ) <-> A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) |
| 83 | 79 81 82 | 3anbi123d | |- ( m = n -> ( ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) <-> ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) ) |
| 84 | 83 | exbidv | |- ( m = n -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) <-> E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) ) |
| 85 | 84 | imbi1d | |- ( m = n -> ( ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) |
| 86 | 85 | albidv | |- ( m = n -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) |
| 87 | 86 | imbi2d | |- ( m = n -> ( ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = x /\ ( f ` suc m ) = y ) /\ A. a e. suc m ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) <-> ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) ) |
| 88 | breq12 | |- ( ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) -> ( ( f ` (/) ) R ( f ` 1o ) <-> x R y ) ) |
|
| 89 | 88 | biimpa | |- ( ( ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) -> x R y ) |
| 90 | 89 | 3adant1 | |- ( ( f Fn suc suc (/) /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) -> x R y ) |
| 91 | ssbr | |- ( R C_ S -> ( x R y -> x S y ) ) |
|
| 92 | 91 | adantr | |- ( ( R C_ S /\ ( S o. S ) C_ S ) -> ( x R y -> x S y ) ) |
| 93 | 90 92 | syl5 | |- ( ( R C_ S /\ ( S o. S ) C_ S ) -> ( ( f Fn suc suc (/) /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) -> x S y ) ) |
| 94 | 93 | exlimdv | |- ( ( R C_ S /\ ( S o. S ) C_ S ) -> ( E. f ( f Fn suc suc (/) /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) -> x S y ) ) |
| 95 | 94 | alrimiv | |- ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc (/) /\ ( ( f ` (/) ) = x /\ ( f ` 1o ) = y ) /\ ( f ` (/) ) R ( f ` 1o ) ) -> x S y ) ) |
| 96 | fvex | |- ( f ` suc i ) e. _V |
|
| 97 | eqeq2 | |- ( z = ( f ` suc i ) -> ( ( g ` suc i ) = z <-> ( g ` suc i ) = ( f ` suc i ) ) ) |
|
| 98 | 97 | anbi2d | |- ( z = ( f ` suc i ) -> ( ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) <-> ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) ) ) |
| 99 | 98 | 3anbi2d | |- ( z = ( f ` suc i ) -> ( ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) <-> ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) ) |
| 100 | 99 | exbidv | |- ( z = ( f ` suc i ) -> ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) <-> E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) ) |
| 101 | breq2 | |- ( z = ( f ` suc i ) -> ( x S z <-> x S ( f ` suc i ) ) ) |
|
| 102 | 100 101 | imbi12d | |- ( z = ( f ` suc i ) -> ( ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) <-> ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S ( f ` suc i ) ) ) ) |
| 103 | 96 102 | spcv | |- ( A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) -> ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S ( f ` suc i ) ) ) |
| 104 | simpr1 | |- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> f Fn suc suc suc i ) |
|
| 105 | sssucid | |- suc suc i C_ suc suc suc i |
|
| 106 | fnssres | |- ( ( f Fn suc suc suc i /\ suc suc i C_ suc suc suc i ) -> ( f |` suc suc i ) Fn suc suc i ) |
|
| 107 | 104 105 106 | sylancl | |- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( f |` suc suc i ) Fn suc suc i ) |
| 108 | peano2 | |- ( i e. _om -> suc i e. _om ) |
|
| 109 | 108 | ad2antrr | |- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> suc i e. _om ) |
| 110 | nnord | |- ( suc i e. _om -> Ord suc i ) |
|
| 111 | 109 110 | syl | |- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> Ord suc i ) |
| 112 | 0elsuc | |- ( Ord suc i -> (/) e. suc suc i ) |
|
| 113 | 111 112 | syl | |- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> (/) e. suc suc i ) |
| 114 | 113 | fvresd | |- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( ( f |` suc suc i ) ` (/) ) = ( f ` (/) ) ) |
| 115 | simpr2l | |- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` (/) ) = x ) |
|
| 116 | 114 115 | eqtrd | |- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( ( f |` suc suc i ) ` (/) ) = x ) |
| 117 | vex | |- i e. _V |
|
| 118 | 117 | sucex | |- suc i e. _V |
| 119 | 118 | sucid | |- suc i e. suc suc i |
| 120 | fvres | |- ( suc i e. suc suc i -> ( ( f |` suc suc i ) ` suc i ) = ( f ` suc i ) ) |
|
| 121 | 119 120 | mp1i | |- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( ( f |` suc suc i ) ` suc i ) = ( f ` suc i ) ) |
| 122 | simplr3 | |- ( ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) /\ b e. suc i ) -> A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) |
|
| 123 | elelsuc | |- ( b e. suc i -> b e. suc suc i ) |
|
| 124 | 123 | adantl | |- ( ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) /\ b e. suc i ) -> b e. suc suc i ) |
| 125 | 35 122 124 | rspcdva | |- ( ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) /\ b e. suc i ) -> ( f ` b ) R ( f ` suc b ) ) |
| 126 | 124 | fvresd | |- ( ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) /\ b e. suc i ) -> ( ( f |` suc suc i ) ` b ) = ( f ` b ) ) |
| 127 | ordsucelsuc | |- ( Ord suc i -> ( b e. suc i <-> suc b e. suc suc i ) ) |
|
| 128 | 111 127 | syl | |- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( b e. suc i <-> suc b e. suc suc i ) ) |
| 129 | 128 | biimpa | |- ( ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) /\ b e. suc i ) -> suc b e. suc suc i ) |
| 130 | 129 | fvresd | |- ( ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) /\ b e. suc i ) -> ( ( f |` suc suc i ) ` suc b ) = ( f ` suc b ) ) |
| 131 | 125 126 130 | 3brtr4d | |- ( ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) /\ b e. suc i ) -> ( ( f |` suc suc i ) ` b ) R ( ( f |` suc suc i ) ` suc b ) ) |
| 132 | 131 | ralrimiva | |- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> A. b e. suc i ( ( f |` suc suc i ) ` b ) R ( ( f |` suc suc i ) ` suc b ) ) |
| 133 | vex | |- f e. _V |
|
| 134 | 133 | resex | |- ( f |` suc suc i ) e. _V |
| 135 | fneq1 | |- ( g = ( f |` suc suc i ) -> ( g Fn suc suc i <-> ( f |` suc suc i ) Fn suc suc i ) ) |
|
| 136 | fveq1 | |- ( g = ( f |` suc suc i ) -> ( g ` (/) ) = ( ( f |` suc suc i ) ` (/) ) ) |
|
| 137 | 136 | eqeq1d | |- ( g = ( f |` suc suc i ) -> ( ( g ` (/) ) = x <-> ( ( f |` suc suc i ) ` (/) ) = x ) ) |
| 138 | fveq1 | |- ( g = ( f |` suc suc i ) -> ( g ` suc i ) = ( ( f |` suc suc i ) ` suc i ) ) |
|
| 139 | 138 | eqeq1d | |- ( g = ( f |` suc suc i ) -> ( ( g ` suc i ) = ( f ` suc i ) <-> ( ( f |` suc suc i ) ` suc i ) = ( f ` suc i ) ) ) |
| 140 | 137 139 | anbi12d | |- ( g = ( f |` suc suc i ) -> ( ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) <-> ( ( ( f |` suc suc i ) ` (/) ) = x /\ ( ( f |` suc suc i ) ` suc i ) = ( f ` suc i ) ) ) ) |
| 141 | fveq1 | |- ( g = ( f |` suc suc i ) -> ( g ` b ) = ( ( f |` suc suc i ) ` b ) ) |
|
| 142 | fveq1 | |- ( g = ( f |` suc suc i ) -> ( g ` suc b ) = ( ( f |` suc suc i ) ` suc b ) ) |
|
| 143 | 141 142 | breq12d | |- ( g = ( f |` suc suc i ) -> ( ( g ` b ) R ( g ` suc b ) <-> ( ( f |` suc suc i ) ` b ) R ( ( f |` suc suc i ) ` suc b ) ) ) |
| 144 | 143 | ralbidv | |- ( g = ( f |` suc suc i ) -> ( A. b e. suc i ( g ` b ) R ( g ` suc b ) <-> A. b e. suc i ( ( f |` suc suc i ) ` b ) R ( ( f |` suc suc i ) ` suc b ) ) ) |
| 145 | 135 140 144 | 3anbi123d | |- ( g = ( f |` suc suc i ) -> ( ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) <-> ( ( f |` suc suc i ) Fn suc suc i /\ ( ( ( f |` suc suc i ) ` (/) ) = x /\ ( ( f |` suc suc i ) ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( ( f |` suc suc i ) ` b ) R ( ( f |` suc suc i ) ` suc b ) ) ) ) |
| 146 | 134 145 | spcev | |- ( ( ( f |` suc suc i ) Fn suc suc i /\ ( ( ( f |` suc suc i ) ` (/) ) = x /\ ( ( f |` suc suc i ) ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( ( f |` suc suc i ) ` b ) R ( ( f |` suc suc i ) ` suc b ) ) -> E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) |
| 147 | 107 116 121 132 146 | syl121anc | |- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) ) |
| 148 | simplrl | |- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> R C_ S ) |
|
| 149 | simpr3 | |- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) |
|
| 150 | ssbr | |- ( R C_ S -> ( ( f ` a ) R ( f ` suc a ) -> ( f ` a ) S ( f ` suc a ) ) ) |
|
| 151 | 150 | ralimdv | |- ( R C_ S -> ( A. a e. suc suc i ( f ` a ) R ( f ` suc a ) -> A. a e. suc suc i ( f ` a ) S ( f ` suc a ) ) ) |
| 152 | 148 149 151 | sylc | |- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> A. a e. suc suc i ( f ` a ) S ( f ` suc a ) ) |
| 153 | fveq2 | |- ( a = suc i -> ( f ` a ) = ( f ` suc i ) ) |
|
| 154 | suceq | |- ( a = suc i -> suc a = suc suc i ) |
|
| 155 | 154 | fveq2d | |- ( a = suc i -> ( f ` suc a ) = ( f ` suc suc i ) ) |
| 156 | 153 155 | breq12d | |- ( a = suc i -> ( ( f ` a ) S ( f ` suc a ) <-> ( f ` suc i ) S ( f ` suc suc i ) ) ) |
| 157 | 156 | rspcv | |- ( suc i e. suc suc i -> ( A. a e. suc suc i ( f ` a ) S ( f ` suc a ) -> ( f ` suc i ) S ( f ` suc suc i ) ) ) |
| 158 | 119 152 157 | mpsyl | |- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` suc i ) S ( f ` suc suc i ) ) |
| 159 | simpr2r | |- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` suc suc i ) = y ) |
|
| 160 | 158 159 | breqtrd | |- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` suc i ) S y ) |
| 161 | breq1 | |- ( z = ( f ` suc i ) -> ( z S y <-> ( f ` suc i ) S y ) ) |
|
| 162 | 101 161 | anbi12d | |- ( z = ( f ` suc i ) -> ( ( x S z /\ z S y ) <-> ( x S ( f ` suc i ) /\ ( f ` suc i ) S y ) ) ) |
| 163 | 96 162 | spcev | |- ( ( x S ( f ` suc i ) /\ ( f ` suc i ) S y ) -> E. z ( x S z /\ z S y ) ) |
| 164 | vex | |- x e. _V |
|
| 165 | vex | |- y e. _V |
|
| 166 | 164 165 | brco | |- ( x ( S o. S ) y <-> E. z ( x S z /\ z S y ) ) |
| 167 | 163 166 | sylibr | |- ( ( x S ( f ` suc i ) /\ ( f ` suc i ) S y ) -> x ( S o. S ) y ) |
| 168 | simplrr | |- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( S o. S ) C_ S ) |
|
| 169 | 168 | ssbrd | |- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( x ( S o. S ) y -> x S y ) ) |
| 170 | 167 169 | syl5 | |- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( ( x S ( f ` suc i ) /\ ( f ` suc i ) S y ) -> x S y ) ) |
| 171 | 160 170 | mpan2d | |- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( x S ( f ` suc i ) -> x S y ) ) |
| 172 | 147 171 | embantd | |- ( ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) /\ ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) ) -> ( ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S ( f ` suc i ) ) -> x S y ) ) |
| 173 | 172 | ex | |- ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) -> ( ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> ( ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S ( f ` suc i ) ) -> x S y ) ) ) |
| 174 | 173 | com23 | |- ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) -> ( ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = ( f ` suc i ) ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S ( f ` suc i ) ) -> ( ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) |
| 175 | 103 174 | syl5 | |- ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) ) -> ( A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) -> ( ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) |
| 176 | 175 | 3impia | |- ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) /\ A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) ) -> ( ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) |
| 177 | 176 | exlimdv | |- ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) /\ A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) ) -> ( E. f ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) |
| 178 | 177 | alrimiv | |- ( ( i e. _om /\ ( R C_ S /\ ( S o. S ) C_ S ) /\ A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) ) -> A. y ( E. f ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) |
| 179 | 178 | 3exp | |- ( i e. _om -> ( ( R C_ S /\ ( S o. S ) C_ S ) -> ( A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) -> A. y ( E. f ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) ) |
| 180 | 179 | a2d | |- ( i e. _om -> ( ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. z ( E. g ( g Fn suc suc i /\ ( ( g ` (/) ) = x /\ ( g ` suc i ) = z ) /\ A. b e. suc i ( g ` b ) R ( g ` suc b ) ) -> x S z ) ) -> ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc suc i /\ ( ( f ` (/) ) = x /\ ( f ` suc suc i ) = y ) /\ A. a e. suc suc i ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) ) |
| 181 | 24 63 75 87 95 180 | finds | |- ( n e. _om -> ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) |
| 182 | 181 | com12 | |- ( ( R C_ S /\ ( S o. S ) C_ S ) -> ( n e. _om -> A. y ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) ) |
| 183 | 182 | ralrimiv | |- ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. n e. _om A. y ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) |
| 184 | ralcom4 | |- ( A. n e. _om A. y ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y A. n e. _om ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) |
|
| 185 | r19.23v | |- ( A. n e. _om ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) |
|
| 186 | 185 | albii | |- ( A. y A. n e. _om ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) |
| 187 | 184 186 | bitri | |- ( A. n e. _om A. y ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) |
| 188 | 183 187 | sylib | |- ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) ) |
| 189 | brttrcl2 | |- ( x t++ R y <-> E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) |
|
| 190 | df-br | |- ( x t++ R y <-> <. x , y >. e. t++ R ) |
|
| 191 | 189 190 | bitr3i | |- ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) <-> <. x , y >. e. t++ R ) |
| 192 | df-br | |- ( x S y <-> <. x , y >. e. S ) |
|
| 193 | 191 192 | imbi12i | |- ( ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) |
| 194 | 193 | albii | |- ( A. y ( E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = x /\ ( f ` suc n ) = y ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) -> x S y ) <-> A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) |
| 195 | 188 194 | sylib | |- ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) |
| 196 | 195 | alrimiv | |- ( ( R C_ S /\ ( S o. S ) C_ S ) -> A. x A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) |
| 197 | relttrcl | |- Rel t++ R |
|
| 198 | ssrel | |- ( Rel t++ R -> ( t++ R C_ S <-> A. x A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) ) |
|
| 199 | 197 198 | ax-mp | |- ( t++ R C_ S <-> A. x A. y ( <. x , y >. e. t++ R -> <. x , y >. e. S ) ) |
| 200 | 196 199 | sylibr | |- ( ( R C_ S /\ ( S o. S ) C_ S ) -> t++ R C_ S ) |