This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterization of elements of the transitive closure of a relation. (Contributed by Scott Fenton, 24-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brttrcl2 | ⊢ ( 𝐴 t++ 𝑅 𝐵 ↔ ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brttrcl | ⊢ ( 𝐴 t++ 𝑅 𝐵 ↔ ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) | |
| 2 | df-1o | ⊢ 1o = suc ∅ | |
| 3 | 2 | difeq2i | ⊢ ( ω ∖ 1o ) = ( ω ∖ suc ∅ ) |
| 4 | 3 | eleq2i | ⊢ ( 𝑚 ∈ ( ω ∖ 1o ) ↔ 𝑚 ∈ ( ω ∖ suc ∅ ) ) |
| 5 | peano1 | ⊢ ∅ ∈ ω | |
| 6 | eldifsucnn | ⊢ ( ∅ ∈ ω → ( 𝑚 ∈ ( ω ∖ suc ∅ ) ↔ ∃ 𝑛 ∈ ( ω ∖ ∅ ) 𝑚 = suc 𝑛 ) ) | |
| 7 | 5 6 | ax-mp | ⊢ ( 𝑚 ∈ ( ω ∖ suc ∅ ) ↔ ∃ 𝑛 ∈ ( ω ∖ ∅ ) 𝑚 = suc 𝑛 ) |
| 8 | dif0 | ⊢ ( ω ∖ ∅ ) = ω | |
| 9 | 8 | rexeqi | ⊢ ( ∃ 𝑛 ∈ ( ω ∖ ∅ ) 𝑚 = suc 𝑛 ↔ ∃ 𝑛 ∈ ω 𝑚 = suc 𝑛 ) |
| 10 | 4 7 9 | 3bitri | ⊢ ( 𝑚 ∈ ( ω ∖ 1o ) ↔ ∃ 𝑛 ∈ ω 𝑚 = suc 𝑛 ) |
| 11 | 10 | anbi1i | ⊢ ( ( 𝑚 ∈ ( ω ∖ 1o ) ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ↔ ( ∃ 𝑛 ∈ ω 𝑚 = suc 𝑛 ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
| 12 | r19.41v | ⊢ ( ∃ 𝑛 ∈ ω ( 𝑚 = suc 𝑛 ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ↔ ( ∃ 𝑛 ∈ ω 𝑚 = suc 𝑛 ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) | |
| 13 | 11 12 | bitr4i | ⊢ ( ( 𝑚 ∈ ( ω ∖ 1o ) ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ↔ ∃ 𝑛 ∈ ω ( 𝑚 = suc 𝑛 ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
| 14 | 13 | exbii | ⊢ ( ∃ 𝑚 ( 𝑚 ∈ ( ω ∖ 1o ) ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ↔ ∃ 𝑚 ∃ 𝑛 ∈ ω ( 𝑚 = suc 𝑛 ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
| 15 | df-rex | ⊢ ( ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑚 ( 𝑚 ∈ ( ω ∖ 1o ) ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) | |
| 16 | rexcom4 | ⊢ ( ∃ 𝑛 ∈ ω ∃ 𝑚 ( 𝑚 = suc 𝑛 ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ↔ ∃ 𝑚 ∃ 𝑛 ∈ ω ( 𝑚 = suc 𝑛 ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) | |
| 17 | 14 15 16 | 3bitr4i | ⊢ ( ∃ 𝑚 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑛 ∈ ω ∃ 𝑚 ( 𝑚 = suc 𝑛 ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
| 18 | vex | ⊢ 𝑛 ∈ V | |
| 19 | 18 | sucex | ⊢ suc 𝑛 ∈ V |
| 20 | suceq | ⊢ ( 𝑚 = suc 𝑛 → suc 𝑚 = suc suc 𝑛 ) | |
| 21 | 20 | fneq2d | ⊢ ( 𝑚 = suc 𝑛 → ( 𝑓 Fn suc 𝑚 ↔ 𝑓 Fn suc suc 𝑛 ) ) |
| 22 | fveqeq2 | ⊢ ( 𝑚 = suc 𝑛 → ( ( 𝑓 ‘ 𝑚 ) = 𝐵 ↔ ( 𝑓 ‘ suc 𝑛 ) = 𝐵 ) ) | |
| 23 | 22 | anbi2d | ⊢ ( 𝑚 = suc 𝑛 → ( ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝐵 ) ) ) |
| 24 | raleq | ⊢ ( 𝑚 = suc 𝑛 → ( ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) | |
| 25 | 21 23 24 | 3anbi123d | ⊢ ( 𝑚 = suc 𝑛 → ( ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
| 26 | 25 | exbidv | ⊢ ( 𝑚 = suc 𝑛 → ( ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
| 27 | 19 26 | ceqsexv | ⊢ ( ∃ 𝑚 ( 𝑚 = suc 𝑛 ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
| 28 | 27 | rexbii | ⊢ ( ∃ 𝑛 ∈ ω ∃ 𝑚 ( 𝑚 = suc 𝑛 ∧ ∃ 𝑓 ( 𝑓 Fn suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ 𝑚 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) ↔ ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
| 29 | 1 17 28 | 3bitri | ⊢ ( 𝐴 t++ 𝑅 𝐵 ↔ ∃ 𝑛 ∈ ω ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝐴 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝐵 ) ∧ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |