This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reconstruct a complex number from its real and imaginary parts. (Contributed by NM, 10-May-1999) (Revised by Mario Carneiro, 7-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | replim | ⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre | ⊢ ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) | |
| 2 | crre | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ℜ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) = 𝑥 ) | |
| 3 | crim | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ℑ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) = 𝑦 ) | |
| 4 | 3 | oveq2d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( i · ( ℑ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) ) = ( i · 𝑦 ) ) |
| 5 | 2 4 | oveq12d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ℜ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) + ( i · ( ℑ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) ) ) = ( 𝑥 + ( i · 𝑦 ) ) ) |
| 6 | 5 | eqcomd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + ( i · 𝑦 ) ) = ( ( ℜ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) + ( i · ( ℑ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) ) ) ) |
| 7 | id | ⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) | |
| 8 | fveq2 | ⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( ℜ ‘ 𝐴 ) = ( ℜ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) ) | |
| 9 | fveq2 | ⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( ℑ ‘ 𝐴 ) = ( ℑ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) ) | |
| 10 | 9 | oveq2d | ⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( i · ( ℑ ‘ 𝐴 ) ) = ( i · ( ℑ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) ) ) |
| 11 | 8 10 | oveq12d | ⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) = ( ( ℜ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) + ( i · ( ℑ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) ) ) ) |
| 12 | 7 11 | eqeq12d | ⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ↔ ( 𝑥 + ( i · 𝑦 ) ) = ( ( ℜ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) + ( i · ( ℑ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) ) ) ) ) |
| 13 | 6 12 | syl5ibrcom | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 14 | 13 | rexlimivv | ⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 15 | 1 14 | syl | ⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |