This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The hyperbolic cosine of a real number is a positive real. (Contributed by Mario Carneiro, 4-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpcoshcl | ⊢ ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ∈ ℝ+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 2 | coshval | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( i · 𝐴 ) ) = ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) = ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ) |
| 4 | rpefcl | ⊢ ( 𝐴 ∈ ℝ → ( exp ‘ 𝐴 ) ∈ ℝ+ ) | |
| 5 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
| 6 | 5 | rpefcld | ⊢ ( 𝐴 ∈ ℝ → ( exp ‘ - 𝐴 ) ∈ ℝ+ ) |
| 7 | 4 6 | rpaddcld | ⊢ ( 𝐴 ∈ ℝ → ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ∈ ℝ+ ) |
| 8 | 7 | rphalfcld | ⊢ ( 𝐴 ∈ ℝ → ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ∈ ℝ+ ) |
| 9 | 3 8 | eqeltrd | ⊢ ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ∈ ℝ+ ) |