This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reciprocal expressed with a real denominator. (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) = ( ( ∗ ‘ 𝐴 ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjcl | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 3 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ ) | |
| 4 | 2 3 | mulcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ∗ ‘ 𝐴 ) · 𝐴 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
| 5 | absvalsq | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
| 7 | 4 6 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ∗ ‘ 𝐴 ) · 𝐴 ) = ( ( abs ‘ 𝐴 ) ↑ 2 ) ) |
| 8 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 10 | 9 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 11 | 10 | sqcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 12 | cjne0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ≠ 0 ↔ ( ∗ ‘ 𝐴 ) ≠ 0 ) ) | |
| 13 | 12 | biimpa | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ 𝐴 ) ≠ 0 ) |
| 14 | 11 2 3 13 | divmuld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ( ( abs ‘ 𝐴 ) ↑ 2 ) / ( ∗ ‘ 𝐴 ) ) = 𝐴 ↔ ( ( ∗ ‘ 𝐴 ) · 𝐴 ) = ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) |
| 15 | 7 14 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) / ( ∗ ‘ 𝐴 ) ) = 𝐴 ) |
| 16 | 15 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / ( ( ( abs ‘ 𝐴 ) ↑ 2 ) / ( ∗ ‘ 𝐴 ) ) ) = ( 1 / 𝐴 ) ) |
| 17 | abs00 | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ) | |
| 18 | 17 | necon3bid | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0 ) ) |
| 19 | 18 | biimpar | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
| 20 | sqne0 | ⊢ ( ( abs ‘ 𝐴 ) ∈ ℂ → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) ≠ 0 ↔ ( abs ‘ 𝐴 ) ≠ 0 ) ) | |
| 21 | 10 20 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) ≠ 0 ↔ ( abs ‘ 𝐴 ) ≠ 0 ) ) |
| 22 | 19 21 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) ≠ 0 ) |
| 23 | 11 2 22 13 | recdivd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / ( ( ( abs ‘ 𝐴 ) ↑ 2 ) / ( ∗ ‘ 𝐴 ) ) ) = ( ( ∗ ‘ 𝐴 ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) |
| 24 | 16 23 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) = ( ( ∗ ‘ 𝐴 ) / ( ( abs ‘ 𝐴 ) ↑ 2 ) ) ) |