This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Positive real closure of the tangent function. (Contributed by Mario Carneiro, 29-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tanrpcl | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( tan ‘ 𝐴 ) ∈ ℝ+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 𝐴 ∈ ℝ ) | |
| 2 | 1 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 𝐴 ∈ ℂ ) |
| 3 | 1 | recoscld | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( cos ‘ 𝐴 ) ∈ ℝ ) |
| 4 | sincosq1sgn | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( 0 < ( sin ‘ 𝐴 ) ∧ 0 < ( cos ‘ 𝐴 ) ) ) | |
| 5 | 4 | simprd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 0 < ( cos ‘ 𝐴 ) ) |
| 6 | 3 5 | elrpd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( cos ‘ 𝐴 ) ∈ ℝ+ ) |
| 7 | 6 | rpne0d | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( cos ‘ 𝐴 ) ≠ 0 ) |
| 8 | tanval | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) | |
| 9 | 2 7 8 | syl2anc | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 10 | 1 | resincld | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( sin ‘ 𝐴 ) ∈ ℝ ) |
| 11 | 4 | simpld | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → 0 < ( sin ‘ 𝐴 ) ) |
| 12 | 10 11 | elrpd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( sin ‘ 𝐴 ) ∈ ℝ+ ) |
| 13 | 12 6 | rpdivcld | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ∈ ℝ+ ) |
| 14 | 9 13 | eqeltrd | ⊢ ( 𝐴 ∈ ( 0 (,) ( π / 2 ) ) → ( tan ‘ 𝐴 ) ∈ ℝ+ ) |