This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The hyperbolic tangent of a real number is real. (Contributed by Mario Carneiro, 4-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | retanhcl | ⊢ ( 𝐴 ∈ ℝ → ( ( tan ‘ ( i · 𝐴 ) ) / i ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | ⊢ i ∈ ℂ | |
| 2 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 3 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 4 | 1 2 3 | sylancr | ⊢ ( 𝐴 ∈ ℝ → ( i · 𝐴 ) ∈ ℂ ) |
| 5 | rpcoshcl | ⊢ ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ∈ ℝ+ ) | |
| 6 | 5 | rpne0d | ⊢ ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ≠ 0 ) |
| 7 | tanval | ⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ ( cos ‘ ( i · 𝐴 ) ) ≠ 0 ) → ( tan ‘ ( i · 𝐴 ) ) = ( ( sin ‘ ( i · 𝐴 ) ) / ( cos ‘ ( i · 𝐴 ) ) ) ) | |
| 8 | 4 6 7 | syl2anc | ⊢ ( 𝐴 ∈ ℝ → ( tan ‘ ( i · 𝐴 ) ) = ( ( sin ‘ ( i · 𝐴 ) ) / ( cos ‘ ( i · 𝐴 ) ) ) ) |
| 9 | 8 | oveq1d | ⊢ ( 𝐴 ∈ ℝ → ( ( tan ‘ ( i · 𝐴 ) ) / i ) = ( ( ( sin ‘ ( i · 𝐴 ) ) / ( cos ‘ ( i · 𝐴 ) ) ) / i ) ) |
| 10 | 4 | sincld | ⊢ ( 𝐴 ∈ ℝ → ( sin ‘ ( i · 𝐴 ) ) ∈ ℂ ) |
| 11 | recoshcl | ⊢ ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ∈ ℝ ) | |
| 12 | 11 | recnd | ⊢ ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ∈ ℂ ) |
| 13 | 1 | a1i | ⊢ ( 𝐴 ∈ ℝ → i ∈ ℂ ) |
| 14 | ine0 | ⊢ i ≠ 0 | |
| 15 | 14 | a1i | ⊢ ( 𝐴 ∈ ℝ → i ≠ 0 ) |
| 16 | 10 12 13 6 15 | divdiv32d | ⊢ ( 𝐴 ∈ ℝ → ( ( ( sin ‘ ( i · 𝐴 ) ) / ( cos ‘ ( i · 𝐴 ) ) ) / i ) = ( ( ( sin ‘ ( i · 𝐴 ) ) / i ) / ( cos ‘ ( i · 𝐴 ) ) ) ) |
| 17 | 9 16 | eqtrd | ⊢ ( 𝐴 ∈ ℝ → ( ( tan ‘ ( i · 𝐴 ) ) / i ) = ( ( ( sin ‘ ( i · 𝐴 ) ) / i ) / ( cos ‘ ( i · 𝐴 ) ) ) ) |
| 18 | resinhcl | ⊢ ( 𝐴 ∈ ℝ → ( ( sin ‘ ( i · 𝐴 ) ) / i ) ∈ ℝ ) | |
| 19 | 18 5 | rerpdivcld | ⊢ ( 𝐴 ∈ ℝ → ( ( ( sin ‘ ( i · 𝐴 ) ) / i ) / ( cos ‘ ( i · 𝐴 ) ) ) ∈ ℝ ) |
| 20 | 17 19 | eqeltrd | ⊢ ( 𝐴 ∈ ℝ → ( ( tan ‘ ( i · 𝐴 ) ) / i ) ∈ ℝ ) |