This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Algebraic manipulation of the formula for J(n). (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | stirlinglem7.1 | ⊢ 𝐽 = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 1 + ( 2 · 𝑛 ) ) / 2 ) · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − 1 ) ) | |
| stirlinglem7.2 | ⊢ 𝐾 = ( 𝑘 ∈ ℕ ↦ ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑘 ) ) ) ) | ||
| stirlinglem7.3 | ⊢ 𝐻 = ( 𝑘 ∈ ℕ0 ↦ ( 2 · ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) | ||
| Assertion | stirlinglem7 | ⊢ ( 𝑁 ∈ ℕ → seq 1 ( + , 𝐾 ) ⇝ ( 𝐽 ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stirlinglem7.1 | ⊢ 𝐽 = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 1 + ( 2 · 𝑛 ) ) / 2 ) · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − 1 ) ) | |
| 2 | stirlinglem7.2 | ⊢ 𝐾 = ( 𝑘 ∈ ℕ ↦ ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑘 ) ) ) ) | |
| 3 | stirlinglem7.3 | ⊢ 𝐻 = ( 𝑘 ∈ ℕ0 ↦ ( 2 · ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) | |
| 4 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 5 | 1zzd | ⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℤ ) | |
| 6 | 1e0p1 | ⊢ 1 = ( 0 + 1 ) | |
| 7 | 6 | a1i | ⊢ ( 𝑁 ∈ ℕ → 1 = ( 0 + 1 ) ) |
| 8 | 7 | seqeq1d | ⊢ ( 𝑁 ∈ ℕ → seq 1 ( + , 𝐻 ) = seq ( 0 + 1 ) ( + , 𝐻 ) ) |
| 9 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 10 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 11 | 10 | a1i | ⊢ ( 𝑁 ∈ ℕ → 0 ∈ ℕ0 ) |
| 12 | oveq2 | ⊢ ( 𝑘 = 𝑗 → ( 2 · 𝑘 ) = ( 2 · 𝑗 ) ) | |
| 13 | 12 | oveq1d | ⊢ ( 𝑘 = 𝑗 → ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝑗 ) + 1 ) ) |
| 14 | 13 | oveq2d | ⊢ ( 𝑘 = 𝑗 → ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) = ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) ) |
| 15 | 13 | oveq2d | ⊢ ( 𝑘 = 𝑗 → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑗 ) + 1 ) ) ) |
| 16 | 14 15 | oveq12d | ⊢ ( 𝑘 = 𝑗 → ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑗 ) + 1 ) ) ) ) |
| 17 | 16 | oveq2d | ⊢ ( 𝑘 = 𝑗 → ( 2 · ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) = ( 2 · ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑗 ) + 1 ) ) ) ) ) |
| 18 | simpr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ℕ0 ) | |
| 19 | 2cnd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → 2 ∈ ℂ ) | |
| 20 | 2cnd | ⊢ ( 𝑗 ∈ ℕ0 → 2 ∈ ℂ ) | |
| 21 | nn0cn | ⊢ ( 𝑗 ∈ ℕ0 → 𝑗 ∈ ℂ ) | |
| 22 | 20 21 | mulcld | ⊢ ( 𝑗 ∈ ℕ0 → ( 2 · 𝑗 ) ∈ ℂ ) |
| 23 | 1cnd | ⊢ ( 𝑗 ∈ ℕ0 → 1 ∈ ℂ ) | |
| 24 | 22 23 | addcld | ⊢ ( 𝑗 ∈ ℕ0 → ( ( 2 · 𝑗 ) + 1 ) ∈ ℂ ) |
| 25 | 24 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 · 𝑗 ) + 1 ) ∈ ℂ ) |
| 26 | 0red | ⊢ ( 𝑗 ∈ ℕ0 → 0 ∈ ℝ ) | |
| 27 | 2re | ⊢ 2 ∈ ℝ | |
| 28 | 27 | a1i | ⊢ ( 𝑗 ∈ ℕ0 → 2 ∈ ℝ ) |
| 29 | nn0re | ⊢ ( 𝑗 ∈ ℕ0 → 𝑗 ∈ ℝ ) | |
| 30 | 28 29 | remulcld | ⊢ ( 𝑗 ∈ ℕ0 → ( 2 · 𝑗 ) ∈ ℝ ) |
| 31 | 1red | ⊢ ( 𝑗 ∈ ℕ0 → 1 ∈ ℝ ) | |
| 32 | 0le2 | ⊢ 0 ≤ 2 | |
| 33 | 32 | a1i | ⊢ ( 𝑗 ∈ ℕ0 → 0 ≤ 2 ) |
| 34 | nn0ge0 | ⊢ ( 𝑗 ∈ ℕ0 → 0 ≤ 𝑗 ) | |
| 35 | 28 29 33 34 | mulge0d | ⊢ ( 𝑗 ∈ ℕ0 → 0 ≤ ( 2 · 𝑗 ) ) |
| 36 | 0lt1 | ⊢ 0 < 1 | |
| 37 | 36 | a1i | ⊢ ( 𝑗 ∈ ℕ0 → 0 < 1 ) |
| 38 | 30 31 35 37 | addgegt0d | ⊢ ( 𝑗 ∈ ℕ0 → 0 < ( ( 2 · 𝑗 ) + 1 ) ) |
| 39 | 26 38 | ltned | ⊢ ( 𝑗 ∈ ℕ0 → 0 ≠ ( ( 2 · 𝑗 ) + 1 ) ) |
| 40 | 39 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → 0 ≠ ( ( 2 · 𝑗 ) + 1 ) ) |
| 41 | 40 | necomd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 · 𝑗 ) + 1 ) ≠ 0 ) |
| 42 | 25 41 | reccld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) ∈ ℂ ) |
| 43 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 44 | 43 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 45 | 19 44 | mulcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 2 · 𝑁 ) ∈ ℂ ) |
| 46 | 1cnd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → 1 ∈ ℂ ) | |
| 47 | 45 46 | addcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 · 𝑁 ) + 1 ) ∈ ℂ ) |
| 48 | 27 | a1i | ⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℝ ) |
| 49 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 50 | 48 49 | remulcld | ⊢ ( 𝑁 ∈ ℕ → ( 2 · 𝑁 ) ∈ ℝ ) |
| 51 | 1red | ⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℝ ) | |
| 52 | 32 | a1i | ⊢ ( 𝑁 ∈ ℕ → 0 ≤ 2 ) |
| 53 | 0red | ⊢ ( 𝑁 ∈ ℕ → 0 ∈ ℝ ) | |
| 54 | nngt0 | ⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) | |
| 55 | 53 49 54 | ltled | ⊢ ( 𝑁 ∈ ℕ → 0 ≤ 𝑁 ) |
| 56 | 48 49 52 55 | mulge0d | ⊢ ( 𝑁 ∈ ℕ → 0 ≤ ( 2 · 𝑁 ) ) |
| 57 | 36 | a1i | ⊢ ( 𝑁 ∈ ℕ → 0 < 1 ) |
| 58 | 50 51 56 57 | addgegt0d | ⊢ ( 𝑁 ∈ ℕ → 0 < ( ( 2 · 𝑁 ) + 1 ) ) |
| 59 | 58 | gt0ne0d | ⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 𝑁 ) + 1 ) ≠ 0 ) |
| 60 | 59 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 · 𝑁 ) + 1 ) ≠ 0 ) |
| 61 | 47 60 | reccld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ∈ ℂ ) |
| 62 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 63 | 62 | a1i | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → 2 ∈ ℕ0 ) |
| 64 | 63 18 | nn0mulcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 2 · 𝑗 ) ∈ ℕ0 ) |
| 65 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 66 | 65 | a1i | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → 1 ∈ ℕ0 ) |
| 67 | 64 66 | nn0addcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 · 𝑗 ) + 1 ) ∈ ℕ0 ) |
| 68 | 61 67 | expcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑗 ) + 1 ) ) ∈ ℂ ) |
| 69 | 42 68 | mulcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑗 ) + 1 ) ) ) ∈ ℂ ) |
| 70 | 19 69 | mulcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 2 · ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑗 ) + 1 ) ) ) ) ∈ ℂ ) |
| 71 | 3 17 18 70 | fvmptd3 | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑗 ) = ( 2 · ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑗 ) + 1 ) ) ) ) ) |
| 72 | 71 70 | eqeltrd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑗 ) ∈ ℂ ) |
| 73 | 3 | stirlinglem6 | ⊢ ( 𝑁 ∈ ℕ → seq 0 ( + , 𝐻 ) ⇝ ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) |
| 74 | 9 11 72 73 | clim2ser | ⊢ ( 𝑁 ∈ ℕ → seq ( 0 + 1 ) ( + , 𝐻 ) ⇝ ( ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) − ( seq 0 ( + , 𝐻 ) ‘ 0 ) ) ) |
| 75 | 8 74 | eqbrtrd | ⊢ ( 𝑁 ∈ ℕ → seq 1 ( + , 𝐻 ) ⇝ ( ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) − ( seq 0 ( + , 𝐻 ) ‘ 0 ) ) ) |
| 76 | 0z | ⊢ 0 ∈ ℤ | |
| 77 | seq1 | ⊢ ( 0 ∈ ℤ → ( seq 0 ( + , 𝐻 ) ‘ 0 ) = ( 𝐻 ‘ 0 ) ) | |
| 78 | 76 77 | mp1i | ⊢ ( 𝑁 ∈ ℕ → ( seq 0 ( + , 𝐻 ) ‘ 0 ) = ( 𝐻 ‘ 0 ) ) |
| 79 | 3 | a1i | ⊢ ( 𝑁 ∈ ℕ → 𝐻 = ( 𝑘 ∈ ℕ0 ↦ ( 2 · ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) ) |
| 80 | simpr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 = 0 ) → 𝑘 = 0 ) | |
| 81 | 80 | oveq2d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 = 0 ) → ( 2 · 𝑘 ) = ( 2 · 0 ) ) |
| 82 | 81 | oveq1d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 = 0 ) → ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 0 ) + 1 ) ) |
| 83 | 82 | oveq2d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 = 0 ) → ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) = ( 1 / ( ( 2 · 0 ) + 1 ) ) ) |
| 84 | 82 | oveq2d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 = 0 ) → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 0 ) + 1 ) ) ) |
| 85 | 83 84 | oveq12d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 = 0 ) → ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( 1 / ( ( 2 · 0 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 0 ) + 1 ) ) ) ) |
| 86 | 85 | oveq2d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 = 0 ) → ( 2 · ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) = ( 2 · ( ( 1 / ( ( 2 · 0 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 0 ) + 1 ) ) ) ) ) |
| 87 | 2cnd | ⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℂ ) | |
| 88 | 0cnd | ⊢ ( 𝑁 ∈ ℕ → 0 ∈ ℂ ) | |
| 89 | 87 88 | mulcld | ⊢ ( 𝑁 ∈ ℕ → ( 2 · 0 ) ∈ ℂ ) |
| 90 | 1cnd | ⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℂ ) | |
| 91 | 89 90 | addcld | ⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 0 ) + 1 ) ∈ ℂ ) |
| 92 | 87 | mul01d | ⊢ ( 𝑁 ∈ ℕ → ( 2 · 0 ) = 0 ) |
| 93 | 92 | eqcomd | ⊢ ( 𝑁 ∈ ℕ → 0 = ( 2 · 0 ) ) |
| 94 | 93 | oveq1d | ⊢ ( 𝑁 ∈ ℕ → ( 0 + 1 ) = ( ( 2 · 0 ) + 1 ) ) |
| 95 | 7 94 | eqtrd | ⊢ ( 𝑁 ∈ ℕ → 1 = ( ( 2 · 0 ) + 1 ) ) |
| 96 | 57 95 | breqtrd | ⊢ ( 𝑁 ∈ ℕ → 0 < ( ( 2 · 0 ) + 1 ) ) |
| 97 | 96 | gt0ne0d | ⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 0 ) + 1 ) ≠ 0 ) |
| 98 | 91 97 | reccld | ⊢ ( 𝑁 ∈ ℕ → ( 1 / ( ( 2 · 0 ) + 1 ) ) ∈ ℂ ) |
| 99 | 87 43 | mulcld | ⊢ ( 𝑁 ∈ ℕ → ( 2 · 𝑁 ) ∈ ℂ ) |
| 100 | 99 90 | addcld | ⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 𝑁 ) + 1 ) ∈ ℂ ) |
| 101 | 100 59 | reccld | ⊢ ( 𝑁 ∈ ℕ → ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ∈ ℂ ) |
| 102 | 95 65 | eqeltrrdi | ⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 0 ) + 1 ) ∈ ℕ0 ) |
| 103 | 101 102 | expcld | ⊢ ( 𝑁 ∈ ℕ → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 0 ) + 1 ) ) ∈ ℂ ) |
| 104 | 98 103 | mulcld | ⊢ ( 𝑁 ∈ ℕ → ( ( 1 / ( ( 2 · 0 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 0 ) + 1 ) ) ) ∈ ℂ ) |
| 105 | 87 104 | mulcld | ⊢ ( 𝑁 ∈ ℕ → ( 2 · ( ( 1 / ( ( 2 · 0 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 0 ) + 1 ) ) ) ) ∈ ℂ ) |
| 106 | 79 86 11 105 | fvmptd | ⊢ ( 𝑁 ∈ ℕ → ( 𝐻 ‘ 0 ) = ( 2 · ( ( 1 / ( ( 2 · 0 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 0 ) + 1 ) ) ) ) ) |
| 107 | 92 | oveq1d | ⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 0 ) + 1 ) = ( 0 + 1 ) ) |
| 108 | 107 6 | eqtr4di | ⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 0 ) + 1 ) = 1 ) |
| 109 | 108 | oveq2d | ⊢ ( 𝑁 ∈ ℕ → ( 1 / ( ( 2 · 0 ) + 1 ) ) = ( 1 / 1 ) ) |
| 110 | 90 | div1d | ⊢ ( 𝑁 ∈ ℕ → ( 1 / 1 ) = 1 ) |
| 111 | 109 110 | eqtrd | ⊢ ( 𝑁 ∈ ℕ → ( 1 / ( ( 2 · 0 ) + 1 ) ) = 1 ) |
| 112 | 108 | oveq2d | ⊢ ( 𝑁 ∈ ℕ → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 0 ) + 1 ) ) = ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ 1 ) ) |
| 113 | 101 | exp1d | ⊢ ( 𝑁 ∈ ℕ → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ 1 ) = ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ) |
| 114 | 112 113 | eqtrd | ⊢ ( 𝑁 ∈ ℕ → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 0 ) + 1 ) ) = ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ) |
| 115 | 111 114 | oveq12d | ⊢ ( 𝑁 ∈ ℕ → ( ( 1 / ( ( 2 · 0 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 0 ) + 1 ) ) ) = ( 1 · ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ) ) |
| 116 | 101 | mullidd | ⊢ ( 𝑁 ∈ ℕ → ( 1 · ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ) = ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ) |
| 117 | 115 116 | eqtrd | ⊢ ( 𝑁 ∈ ℕ → ( ( 1 / ( ( 2 · 0 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 0 ) + 1 ) ) ) = ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ) |
| 118 | 117 | oveq2d | ⊢ ( 𝑁 ∈ ℕ → ( 2 · ( ( 1 / ( ( 2 · 0 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 0 ) + 1 ) ) ) ) = ( 2 · ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ) ) |
| 119 | 87 90 100 59 | divassd | ⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 1 ) / ( ( 2 · 𝑁 ) + 1 ) ) = ( 2 · ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ) ) |
| 120 | 87 | mulridd | ⊢ ( 𝑁 ∈ ℕ → ( 2 · 1 ) = 2 ) |
| 121 | 120 | oveq1d | ⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 1 ) / ( ( 2 · 𝑁 ) + 1 ) ) = ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ) |
| 122 | 118 119 121 | 3eqtr2d | ⊢ ( 𝑁 ∈ ℕ → ( 2 · ( ( 1 / ( ( 2 · 0 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 0 ) + 1 ) ) ) ) = ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ) |
| 123 | 78 106 122 | 3eqtrd | ⊢ ( 𝑁 ∈ ℕ → ( seq 0 ( + , 𝐻 ) ‘ 0 ) = ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ) |
| 124 | 123 | oveq2d | ⊢ ( 𝑁 ∈ ℕ → ( ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) − ( seq 0 ( + , 𝐻 ) ‘ 0 ) ) = ( ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) − ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ) ) |
| 125 | 75 124 | breqtrd | ⊢ ( 𝑁 ∈ ℕ → seq 1 ( + , 𝐻 ) ⇝ ( ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) − ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ) ) |
| 126 | 90 99 | addcld | ⊢ ( 𝑁 ∈ ℕ → ( 1 + ( 2 · 𝑁 ) ) ∈ ℂ ) |
| 127 | 126 | halfcld | ⊢ ( 𝑁 ∈ ℕ → ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) ∈ ℂ ) |
| 128 | seqex | ⊢ seq 1 ( + , 𝐾 ) ∈ V | |
| 129 | 128 | a1i | ⊢ ( 𝑁 ∈ ℕ → seq 1 ( + , 𝐾 ) ∈ V ) |
| 130 | elnnuz | ⊢ ( 𝑗 ∈ ℕ ↔ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 131 | 130 | biimpi | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
| 132 | 131 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
| 133 | oveq2 | ⊢ ( 𝑘 = 𝑛 → ( 2 · 𝑘 ) = ( 2 · 𝑛 ) ) | |
| 134 | 133 | oveq1d | ⊢ ( 𝑘 = 𝑛 → ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝑛 ) + 1 ) ) |
| 135 | 134 | oveq2d | ⊢ ( 𝑘 = 𝑛 → ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) = ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 136 | 134 | oveq2d | ⊢ ( 𝑘 = 𝑛 → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 137 | 135 136 | oveq12d | ⊢ ( 𝑘 = 𝑛 → ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
| 138 | 137 | oveq2d | ⊢ ( 𝑘 = 𝑛 → ( 2 · ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) = ( 2 · ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 139 | elfzuz | ⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 140 | elnnuz | ⊢ ( 𝑛 ∈ ℕ ↔ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 141 | 140 | biimpri | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) → 𝑛 ∈ ℕ ) |
| 142 | nnnn0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) | |
| 143 | 139 141 142 | 3syl | ⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → 𝑛 ∈ ℕ0 ) |
| 144 | 143 | adantl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑛 ∈ ℕ0 ) |
| 145 | 2cnd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 2 ∈ ℂ ) | |
| 146 | 144 | nn0cnd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑛 ∈ ℂ ) |
| 147 | 145 146 | mulcld | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 · 𝑛 ) ∈ ℂ ) |
| 148 | 1cnd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 1 ∈ ℂ ) | |
| 149 | 147 148 | addcld | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℂ ) |
| 150 | elfznn | ⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → 𝑛 ∈ ℕ ) | |
| 151 | 0red | ⊢ ( 𝑛 ∈ ℕ → 0 ∈ ℝ ) | |
| 152 | 1red | ⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℝ ) | |
| 153 | 27 | a1i | ⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℝ ) |
| 154 | nnre | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) | |
| 155 | 153 154 | remulcld | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ ) |
| 156 | 155 152 | readdcld | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ∈ ℝ ) |
| 157 | 36 | a1i | ⊢ ( 𝑛 ∈ ℕ → 0 < 1 ) |
| 158 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 159 | 158 | a1i | ⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℝ+ ) |
| 160 | nnrp | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) | |
| 161 | 159 160 | rpmulcld | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ+ ) |
| 162 | 152 161 | ltaddrp2d | ⊢ ( 𝑛 ∈ ℕ → 1 < ( ( 2 · 𝑛 ) + 1 ) ) |
| 163 | 151 152 156 157 162 | lttrd | ⊢ ( 𝑛 ∈ ℕ → 0 < ( ( 2 · 𝑛 ) + 1 ) ) |
| 164 | 163 | gt0ne0d | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ≠ 0 ) |
| 165 | 150 164 | syl | ⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → ( ( 2 · 𝑛 ) + 1 ) ≠ 0 ) |
| 166 | 165 | adantl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑛 ) + 1 ) ≠ 0 ) |
| 167 | 149 166 | reccld | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℂ ) |
| 168 | 101 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ∈ ℂ ) |
| 169 | 62 | a1i | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 2 ∈ ℕ0 ) |
| 170 | 169 144 | nn0mulcld | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 · 𝑛 ) ∈ ℕ0 ) |
| 171 | 65 | a1i | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 1 ∈ ℕ0 ) |
| 172 | 170 171 | nn0addcld | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ0 ) |
| 173 | 168 172 | expcld | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℂ ) |
| 174 | 167 173 | mulcld | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ∈ ℂ ) |
| 175 | 145 174 | mulcld | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 · ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) ∈ ℂ ) |
| 176 | 3 138 144 175 | fvmptd3 | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐻 ‘ 𝑛 ) = ( 2 · ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 177 | 176 175 | eqeltrd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐻 ‘ 𝑛 ) ∈ ℂ ) |
| 178 | addcl | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ ) → ( 𝑛 + 𝑖 ) ∈ ℂ ) | |
| 179 | 178 | adantl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ ) ) → ( 𝑛 + 𝑖 ) ∈ ℂ ) |
| 180 | 132 177 179 | seqcl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐻 ) ‘ 𝑗 ) ∈ ℂ ) |
| 181 | 1cnd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ ) ) → 1 ∈ ℂ ) | |
| 182 | 2cnd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ ) ) → 2 ∈ ℂ ) | |
| 183 | 43 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ ) ) → 𝑁 ∈ ℂ ) |
| 184 | 182 183 | mulcld | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ ) ) → ( 2 · 𝑁 ) ∈ ℂ ) |
| 185 | 181 184 | addcld | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ ) ) → ( 1 + ( 2 · 𝑁 ) ) ∈ ℂ ) |
| 186 | 185 | halfcld | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ ) ) → ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) ∈ ℂ ) |
| 187 | simprl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ ) ) → 𝑛 ∈ ℂ ) | |
| 188 | simprr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ ) ) → 𝑖 ∈ ℂ ) | |
| 189 | 186 187 188 | adddid | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ ) ) → ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( 𝑛 + 𝑖 ) ) = ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · 𝑛 ) + ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · 𝑖 ) ) ) |
| 190 | 133 | oveq2d | ⊢ ( 𝑘 = 𝑛 → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑘 ) ) = ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) |
| 191 | 135 190 | oveq12d | ⊢ ( 𝑘 = 𝑛 → ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑘 ) ) ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ) |
| 192 | 150 | adantl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑛 ∈ ℕ ) |
| 193 | 168 170 | expcld | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ∈ ℂ ) |
| 194 | 167 193 | mulcld | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ∈ ℂ ) |
| 195 | 2 191 192 194 | fvmptd3 | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐾 ‘ 𝑛 ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ) |
| 196 | 126 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 + ( 2 · 𝑁 ) ) ∈ ℂ ) |
| 197 | 2ne0 | ⊢ 2 ≠ 0 | |
| 198 | 197 | a1i | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 2 ≠ 0 ) |
| 199 | 196 145 175 198 | div32d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( 2 · ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) = ( ( 1 + ( 2 · 𝑁 ) ) · ( ( 2 · ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) / 2 ) ) ) |
| 200 | 174 145 198 | divcan3d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) / 2 ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
| 201 | 200 | oveq2d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 + ( 2 · 𝑁 ) ) · ( ( 2 · ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) / 2 ) ) = ( ( 1 + ( 2 · 𝑁 ) ) · ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 202 | 196 167 173 | mul12d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 + ( 2 · 𝑁 ) ) · ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 + ( 2 · 𝑁 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 203 | 100 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑁 ) + 1 ) ∈ ℂ ) |
| 204 | 59 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑁 ) + 1 ) ≠ 0 ) |
| 205 | 172 | nn0zd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℤ ) |
| 206 | 203 204 205 | exprecd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) = ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
| 207 | 206 | oveq2d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 + ( 2 · 𝑁 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( 1 + ( 2 · 𝑁 ) ) · ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 208 | 203 172 | expcld | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℂ ) |
| 209 | 203 204 205 | expne0d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ≠ 0 ) |
| 210 | 196 208 209 | divrecd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 + ( 2 · 𝑁 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( 1 + ( 2 · 𝑁 ) ) · ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 211 | 43 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑁 ∈ ℂ ) |
| 212 | 145 211 | mulcld | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 · 𝑁 ) ∈ ℂ ) |
| 213 | 148 212 | addcomd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 + ( 2 · 𝑁 ) ) = ( ( 2 · 𝑁 ) + 1 ) ) |
| 214 | 203 170 | expcld | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ∈ ℂ ) |
| 215 | 214 203 | mulcomd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) · ( ( 2 · 𝑁 ) + 1 ) ) = ( ( ( 2 · 𝑁 ) + 1 ) · ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) ) |
| 216 | 213 215 | oveq12d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 + ( 2 · 𝑁 ) ) / ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) · ( ( 2 · 𝑁 ) + 1 ) ) ) = ( ( ( 2 · 𝑁 ) + 1 ) / ( ( ( 2 · 𝑁 ) + 1 ) · ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) ) ) |
| 217 | 203 170 | expp1d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) · ( ( 2 · 𝑁 ) + 1 ) ) ) |
| 218 | 217 | oveq2d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 + ( 2 · 𝑁 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( 1 + ( 2 · 𝑁 ) ) / ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) · ( ( 2 · 𝑁 ) + 1 ) ) ) ) |
| 219 | 2z | ⊢ 2 ∈ ℤ | |
| 220 | 219 | a1i | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 2 ∈ ℤ ) |
| 221 | 144 | nn0zd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑛 ∈ ℤ ) |
| 222 | 220 221 | zmulcld | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 · 𝑛 ) ∈ ℤ ) |
| 223 | 203 204 222 | expne0d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ≠ 0 ) |
| 224 | 203 203 214 204 223 | divdiv1d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( ( 2 · 𝑁 ) + 1 ) / ( ( 2 · 𝑁 ) + 1 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) = ( ( ( 2 · 𝑁 ) + 1 ) / ( ( ( 2 · 𝑁 ) + 1 ) · ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) ) ) |
| 225 | 216 218 224 | 3eqtr4d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 + ( 2 · 𝑁 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) / ( ( 2 · 𝑁 ) + 1 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) ) |
| 226 | 207 210 225 | 3eqtr2d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 + ( 2 · 𝑁 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) / ( ( 2 · 𝑁 ) + 1 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) ) |
| 227 | 226 | oveq2d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 + ( 2 · 𝑁 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( ( ( 2 · 𝑁 ) + 1 ) / ( ( 2 · 𝑁 ) + 1 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) ) ) |
| 228 | 203 204 | dividd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) / ( ( 2 · 𝑁 ) + 1 ) ) = 1 ) |
| 229 | 1exp | ⊢ ( ( 2 · 𝑛 ) ∈ ℤ → ( 1 ↑ ( 2 · 𝑛 ) ) = 1 ) | |
| 230 | 222 229 | syl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 ↑ ( 2 · 𝑛 ) ) = 1 ) |
| 231 | 228 230 | eqtr4d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) / ( ( 2 · 𝑁 ) + 1 ) ) = ( 1 ↑ ( 2 · 𝑛 ) ) ) |
| 232 | 231 | oveq1d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( ( 2 · 𝑁 ) + 1 ) / ( ( 2 · 𝑁 ) + 1 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) = ( ( 1 ↑ ( 2 · 𝑛 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) ) |
| 233 | 148 203 204 170 | expdivd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) = ( ( 1 ↑ ( 2 · 𝑛 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) ) |
| 234 | 232 233 | eqtr4d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( ( 2 · 𝑁 ) + 1 ) / ( ( 2 · 𝑁 ) + 1 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) = ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) |
| 235 | 234 | oveq2d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( ( ( 2 · 𝑁 ) + 1 ) / ( ( 2 · 𝑁 ) + 1 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ) |
| 236 | 202 227 235 | 3eqtrd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 + ( 2 · 𝑁 ) ) · ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ) |
| 237 | 199 201 236 | 3eqtrd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( 2 · ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ) |
| 238 | 176 | eqcomd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 · ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) = ( 𝐻 ‘ 𝑛 ) ) |
| 239 | 238 | oveq2d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( 2 · ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) = ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( 𝐻 ‘ 𝑛 ) ) ) |
| 240 | 195 237 239 | 3eqtr2d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐾 ‘ 𝑛 ) = ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( 𝐻 ‘ 𝑛 ) ) ) |
| 241 | 179 189 132 177 240 | seqdistr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐾 ) ‘ 𝑗 ) = ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( seq 1 ( + , 𝐻 ) ‘ 𝑗 ) ) ) |
| 242 | 4 5 125 127 129 180 241 | climmulc2 | ⊢ ( 𝑁 ∈ ℕ → seq 1 ( + , 𝐾 ) ⇝ ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) − ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ) ) ) |
| 243 | 90 99 | addcomd | ⊢ ( 𝑁 ∈ ℕ → ( 1 + ( 2 · 𝑁 ) ) = ( ( 2 · 𝑁 ) + 1 ) ) |
| 244 | 243 | oveq1d | ⊢ ( 𝑁 ∈ ℕ → ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) = ( ( ( 2 · 𝑁 ) + 1 ) / 2 ) ) |
| 245 | 244 | oveq1d | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) − ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) / 2 ) · ( ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) − ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ) ) ) |
| 246 | 244 127 | eqeltrrd | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 · 𝑁 ) + 1 ) / 2 ) ∈ ℂ ) |
| 247 | 43 90 | addcld | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℂ ) |
| 248 | nnne0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) | |
| 249 | 247 43 248 | divcld | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) / 𝑁 ) ∈ ℂ ) |
| 250 | 49 51 | readdcld | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℝ ) |
| 251 | 49 | ltp1d | ⊢ ( 𝑁 ∈ ℕ → 𝑁 < ( 𝑁 + 1 ) ) |
| 252 | 53 49 250 54 251 | lttrd | ⊢ ( 𝑁 ∈ ℕ → 0 < ( 𝑁 + 1 ) ) |
| 253 | 252 | gt0ne0d | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ≠ 0 ) |
| 254 | 247 43 253 248 | divne0d | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) / 𝑁 ) ≠ 0 ) |
| 255 | 249 254 | logcld | ⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ∈ ℂ ) |
| 256 | 87 100 59 | divcld | ⊢ ( 𝑁 ∈ ℕ → ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ∈ ℂ ) |
| 257 | 246 255 256 | subdid | ⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 2 · 𝑁 ) + 1 ) / 2 ) · ( ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) − ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ) ) = ( ( ( ( ( 2 · 𝑁 ) + 1 ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − ( ( ( ( 2 · 𝑁 ) + 1 ) / 2 ) · ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ) ) ) |
| 258 | 99 90 | addcomd | ⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 𝑁 ) + 1 ) = ( 1 + ( 2 · 𝑁 ) ) ) |
| 259 | 258 | oveq1d | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 · 𝑁 ) + 1 ) / 2 ) = ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) ) |
| 260 | 259 | oveq1d | ⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 2 · 𝑁 ) + 1 ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) = ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) ) |
| 261 | 197 | a1i | ⊢ ( 𝑁 ∈ ℕ → 2 ≠ 0 ) |
| 262 | 100 87 59 261 | divcan6d | ⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 2 · 𝑁 ) + 1 ) / 2 ) · ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ) = 1 ) |
| 263 | 260 262 | oveq12d | ⊢ ( 𝑁 ∈ ℕ → ( ( ( ( ( 2 · 𝑁 ) + 1 ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − ( ( ( ( 2 · 𝑁 ) + 1 ) / 2 ) · ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ) ) = ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ) |
| 264 | 245 257 263 | 3eqtrd | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) − ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ) ) = ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ) |
| 265 | 242 264 | breqtrd | ⊢ ( 𝑁 ∈ ℕ → seq 1 ( + , 𝐾 ) ⇝ ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ) |
| 266 | oveq2 | ⊢ ( 𝑛 = 𝑁 → ( 2 · 𝑛 ) = ( 2 · 𝑁 ) ) | |
| 267 | 266 | oveq2d | ⊢ ( 𝑛 = 𝑁 → ( 1 + ( 2 · 𝑛 ) ) = ( 1 + ( 2 · 𝑁 ) ) ) |
| 268 | 267 | oveq1d | ⊢ ( 𝑛 = 𝑁 → ( ( 1 + ( 2 · 𝑛 ) ) / 2 ) = ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) ) |
| 269 | oveq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 + 1 ) = ( 𝑁 + 1 ) ) | |
| 270 | id | ⊢ ( 𝑛 = 𝑁 → 𝑛 = 𝑁 ) | |
| 271 | 269 270 | oveq12d | ⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 + 1 ) / 𝑛 ) = ( ( 𝑁 + 1 ) / 𝑁 ) ) |
| 272 | 271 | fveq2d | ⊢ ( 𝑛 = 𝑁 → ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) = ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) |
| 273 | 268 272 | oveq12d | ⊢ ( 𝑛 = 𝑁 → ( ( ( 1 + ( 2 · 𝑛 ) ) / 2 ) · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) = ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) ) |
| 274 | 273 | oveq1d | ⊢ ( 𝑛 = 𝑁 → ( ( ( ( 1 + ( 2 · 𝑛 ) ) / 2 ) · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − 1 ) = ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ) |
| 275 | id | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ ) | |
| 276 | 127 255 | mulcld | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) ∈ ℂ ) |
| 277 | 276 90 | subcld | ⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ∈ ℂ ) |
| 278 | 1 274 275 277 | fvmptd3 | ⊢ ( 𝑁 ∈ ℕ → ( 𝐽 ‘ 𝑁 ) = ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ) |
| 279 | 265 278 | breqtrrd | ⊢ ( 𝑁 ∈ ℕ → seq 1 ( + , 𝐾 ) ⇝ ( 𝐽 ‘ 𝑁 ) ) |