This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Algebraic manipulation of the formula for J(n). (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | stirlinglem7.1 | |- J = ( n e. NN |-> ( ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) - 1 ) ) |
|
| stirlinglem7.2 | |- K = ( k e. NN |-> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) ) ) |
||
| stirlinglem7.3 | |- H = ( k e. NN0 |-> ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) ) ) ) |
||
| Assertion | stirlinglem7 | |- ( N e. NN -> seq 1 ( + , K ) ~~> ( J ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stirlinglem7.1 | |- J = ( n e. NN |-> ( ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) - 1 ) ) |
|
| 2 | stirlinglem7.2 | |- K = ( k e. NN |-> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) ) ) |
|
| 3 | stirlinglem7.3 | |- H = ( k e. NN0 |-> ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) ) ) ) |
|
| 4 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 5 | 1zzd | |- ( N e. NN -> 1 e. ZZ ) |
|
| 6 | 1e0p1 | |- 1 = ( 0 + 1 ) |
|
| 7 | 6 | a1i | |- ( N e. NN -> 1 = ( 0 + 1 ) ) |
| 8 | 7 | seqeq1d | |- ( N e. NN -> seq 1 ( + , H ) = seq ( 0 + 1 ) ( + , H ) ) |
| 9 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 10 | 0nn0 | |- 0 e. NN0 |
|
| 11 | 10 | a1i | |- ( N e. NN -> 0 e. NN0 ) |
| 12 | oveq2 | |- ( k = j -> ( 2 x. k ) = ( 2 x. j ) ) |
|
| 13 | 12 | oveq1d | |- ( k = j -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. j ) + 1 ) ) |
| 14 | 13 | oveq2d | |- ( k = j -> ( 1 / ( ( 2 x. k ) + 1 ) ) = ( 1 / ( ( 2 x. j ) + 1 ) ) ) |
| 15 | 13 | oveq2d | |- ( k = j -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) = ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. j ) + 1 ) ) ) |
| 16 | 14 15 | oveq12d | |- ( k = j -> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) ) = ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. j ) + 1 ) ) ) ) |
| 17 | 16 | oveq2d | |- ( k = j -> ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) ) ) = ( 2 x. ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. j ) + 1 ) ) ) ) ) |
| 18 | simpr | |- ( ( N e. NN /\ j e. NN0 ) -> j e. NN0 ) |
|
| 19 | 2cnd | |- ( ( N e. NN /\ j e. NN0 ) -> 2 e. CC ) |
|
| 20 | 2cnd | |- ( j e. NN0 -> 2 e. CC ) |
|
| 21 | nn0cn | |- ( j e. NN0 -> j e. CC ) |
|
| 22 | 20 21 | mulcld | |- ( j e. NN0 -> ( 2 x. j ) e. CC ) |
| 23 | 1cnd | |- ( j e. NN0 -> 1 e. CC ) |
|
| 24 | 22 23 | addcld | |- ( j e. NN0 -> ( ( 2 x. j ) + 1 ) e. CC ) |
| 25 | 24 | adantl | |- ( ( N e. NN /\ j e. NN0 ) -> ( ( 2 x. j ) + 1 ) e. CC ) |
| 26 | 0red | |- ( j e. NN0 -> 0 e. RR ) |
|
| 27 | 2re | |- 2 e. RR |
|
| 28 | 27 | a1i | |- ( j e. NN0 -> 2 e. RR ) |
| 29 | nn0re | |- ( j e. NN0 -> j e. RR ) |
|
| 30 | 28 29 | remulcld | |- ( j e. NN0 -> ( 2 x. j ) e. RR ) |
| 31 | 1red | |- ( j e. NN0 -> 1 e. RR ) |
|
| 32 | 0le2 | |- 0 <_ 2 |
|
| 33 | 32 | a1i | |- ( j e. NN0 -> 0 <_ 2 ) |
| 34 | nn0ge0 | |- ( j e. NN0 -> 0 <_ j ) |
|
| 35 | 28 29 33 34 | mulge0d | |- ( j e. NN0 -> 0 <_ ( 2 x. j ) ) |
| 36 | 0lt1 | |- 0 < 1 |
|
| 37 | 36 | a1i | |- ( j e. NN0 -> 0 < 1 ) |
| 38 | 30 31 35 37 | addgegt0d | |- ( j e. NN0 -> 0 < ( ( 2 x. j ) + 1 ) ) |
| 39 | 26 38 | ltned | |- ( j e. NN0 -> 0 =/= ( ( 2 x. j ) + 1 ) ) |
| 40 | 39 | adantl | |- ( ( N e. NN /\ j e. NN0 ) -> 0 =/= ( ( 2 x. j ) + 1 ) ) |
| 41 | 40 | necomd | |- ( ( N e. NN /\ j e. NN0 ) -> ( ( 2 x. j ) + 1 ) =/= 0 ) |
| 42 | 25 41 | reccld | |- ( ( N e. NN /\ j e. NN0 ) -> ( 1 / ( ( 2 x. j ) + 1 ) ) e. CC ) |
| 43 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 44 | 43 | adantr | |- ( ( N e. NN /\ j e. NN0 ) -> N e. CC ) |
| 45 | 19 44 | mulcld | |- ( ( N e. NN /\ j e. NN0 ) -> ( 2 x. N ) e. CC ) |
| 46 | 1cnd | |- ( ( N e. NN /\ j e. NN0 ) -> 1 e. CC ) |
|
| 47 | 45 46 | addcld | |- ( ( N e. NN /\ j e. NN0 ) -> ( ( 2 x. N ) + 1 ) e. CC ) |
| 48 | 27 | a1i | |- ( N e. NN -> 2 e. RR ) |
| 49 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 50 | 48 49 | remulcld | |- ( N e. NN -> ( 2 x. N ) e. RR ) |
| 51 | 1red | |- ( N e. NN -> 1 e. RR ) |
|
| 52 | 32 | a1i | |- ( N e. NN -> 0 <_ 2 ) |
| 53 | 0red | |- ( N e. NN -> 0 e. RR ) |
|
| 54 | nngt0 | |- ( N e. NN -> 0 < N ) |
|
| 55 | 53 49 54 | ltled | |- ( N e. NN -> 0 <_ N ) |
| 56 | 48 49 52 55 | mulge0d | |- ( N e. NN -> 0 <_ ( 2 x. N ) ) |
| 57 | 36 | a1i | |- ( N e. NN -> 0 < 1 ) |
| 58 | 50 51 56 57 | addgegt0d | |- ( N e. NN -> 0 < ( ( 2 x. N ) + 1 ) ) |
| 59 | 58 | gt0ne0d | |- ( N e. NN -> ( ( 2 x. N ) + 1 ) =/= 0 ) |
| 60 | 59 | adantr | |- ( ( N e. NN /\ j e. NN0 ) -> ( ( 2 x. N ) + 1 ) =/= 0 ) |
| 61 | 47 60 | reccld | |- ( ( N e. NN /\ j e. NN0 ) -> ( 1 / ( ( 2 x. N ) + 1 ) ) e. CC ) |
| 62 | 2nn0 | |- 2 e. NN0 |
|
| 63 | 62 | a1i | |- ( ( N e. NN /\ j e. NN0 ) -> 2 e. NN0 ) |
| 64 | 63 18 | nn0mulcld | |- ( ( N e. NN /\ j e. NN0 ) -> ( 2 x. j ) e. NN0 ) |
| 65 | 1nn0 | |- 1 e. NN0 |
|
| 66 | 65 | a1i | |- ( ( N e. NN /\ j e. NN0 ) -> 1 e. NN0 ) |
| 67 | 64 66 | nn0addcld | |- ( ( N e. NN /\ j e. NN0 ) -> ( ( 2 x. j ) + 1 ) e. NN0 ) |
| 68 | 61 67 | expcld | |- ( ( N e. NN /\ j e. NN0 ) -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. j ) + 1 ) ) e. CC ) |
| 69 | 42 68 | mulcld | |- ( ( N e. NN /\ j e. NN0 ) -> ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. j ) + 1 ) ) ) e. CC ) |
| 70 | 19 69 | mulcld | |- ( ( N e. NN /\ j e. NN0 ) -> ( 2 x. ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. j ) + 1 ) ) ) ) e. CC ) |
| 71 | 3 17 18 70 | fvmptd3 | |- ( ( N e. NN /\ j e. NN0 ) -> ( H ` j ) = ( 2 x. ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. j ) + 1 ) ) ) ) ) |
| 72 | 71 70 | eqeltrd | |- ( ( N e. NN /\ j e. NN0 ) -> ( H ` j ) e. CC ) |
| 73 | 3 | stirlinglem6 | |- ( N e. NN -> seq 0 ( + , H ) ~~> ( log ` ( ( N + 1 ) / N ) ) ) |
| 74 | 9 11 72 73 | clim2ser | |- ( N e. NN -> seq ( 0 + 1 ) ( + , H ) ~~> ( ( log ` ( ( N + 1 ) / N ) ) - ( seq 0 ( + , H ) ` 0 ) ) ) |
| 75 | 8 74 | eqbrtrd | |- ( N e. NN -> seq 1 ( + , H ) ~~> ( ( log ` ( ( N + 1 ) / N ) ) - ( seq 0 ( + , H ) ` 0 ) ) ) |
| 76 | 0z | |- 0 e. ZZ |
|
| 77 | seq1 | |- ( 0 e. ZZ -> ( seq 0 ( + , H ) ` 0 ) = ( H ` 0 ) ) |
|
| 78 | 76 77 | mp1i | |- ( N e. NN -> ( seq 0 ( + , H ) ` 0 ) = ( H ` 0 ) ) |
| 79 | 3 | a1i | |- ( N e. NN -> H = ( k e. NN0 |-> ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) ) ) ) ) |
| 80 | simpr | |- ( ( N e. NN /\ k = 0 ) -> k = 0 ) |
|
| 81 | 80 | oveq2d | |- ( ( N e. NN /\ k = 0 ) -> ( 2 x. k ) = ( 2 x. 0 ) ) |
| 82 | 81 | oveq1d | |- ( ( N e. NN /\ k = 0 ) -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. 0 ) + 1 ) ) |
| 83 | 82 | oveq2d | |- ( ( N e. NN /\ k = 0 ) -> ( 1 / ( ( 2 x. k ) + 1 ) ) = ( 1 / ( ( 2 x. 0 ) + 1 ) ) ) |
| 84 | 82 | oveq2d | |- ( ( N e. NN /\ k = 0 ) -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) = ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. 0 ) + 1 ) ) ) |
| 85 | 83 84 | oveq12d | |- ( ( N e. NN /\ k = 0 ) -> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) ) = ( ( 1 / ( ( 2 x. 0 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. 0 ) + 1 ) ) ) ) |
| 86 | 85 | oveq2d | |- ( ( N e. NN /\ k = 0 ) -> ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) ) ) = ( 2 x. ( ( 1 / ( ( 2 x. 0 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. 0 ) + 1 ) ) ) ) ) |
| 87 | 2cnd | |- ( N e. NN -> 2 e. CC ) |
|
| 88 | 0cnd | |- ( N e. NN -> 0 e. CC ) |
|
| 89 | 87 88 | mulcld | |- ( N e. NN -> ( 2 x. 0 ) e. CC ) |
| 90 | 1cnd | |- ( N e. NN -> 1 e. CC ) |
|
| 91 | 89 90 | addcld | |- ( N e. NN -> ( ( 2 x. 0 ) + 1 ) e. CC ) |
| 92 | 87 | mul01d | |- ( N e. NN -> ( 2 x. 0 ) = 0 ) |
| 93 | 92 | eqcomd | |- ( N e. NN -> 0 = ( 2 x. 0 ) ) |
| 94 | 93 | oveq1d | |- ( N e. NN -> ( 0 + 1 ) = ( ( 2 x. 0 ) + 1 ) ) |
| 95 | 7 94 | eqtrd | |- ( N e. NN -> 1 = ( ( 2 x. 0 ) + 1 ) ) |
| 96 | 57 95 | breqtrd | |- ( N e. NN -> 0 < ( ( 2 x. 0 ) + 1 ) ) |
| 97 | 96 | gt0ne0d | |- ( N e. NN -> ( ( 2 x. 0 ) + 1 ) =/= 0 ) |
| 98 | 91 97 | reccld | |- ( N e. NN -> ( 1 / ( ( 2 x. 0 ) + 1 ) ) e. CC ) |
| 99 | 87 43 | mulcld | |- ( N e. NN -> ( 2 x. N ) e. CC ) |
| 100 | 99 90 | addcld | |- ( N e. NN -> ( ( 2 x. N ) + 1 ) e. CC ) |
| 101 | 100 59 | reccld | |- ( N e. NN -> ( 1 / ( ( 2 x. N ) + 1 ) ) e. CC ) |
| 102 | 95 65 | eqeltrrdi | |- ( N e. NN -> ( ( 2 x. 0 ) + 1 ) e. NN0 ) |
| 103 | 101 102 | expcld | |- ( N e. NN -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. 0 ) + 1 ) ) e. CC ) |
| 104 | 98 103 | mulcld | |- ( N e. NN -> ( ( 1 / ( ( 2 x. 0 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. 0 ) + 1 ) ) ) e. CC ) |
| 105 | 87 104 | mulcld | |- ( N e. NN -> ( 2 x. ( ( 1 / ( ( 2 x. 0 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. 0 ) + 1 ) ) ) ) e. CC ) |
| 106 | 79 86 11 105 | fvmptd | |- ( N e. NN -> ( H ` 0 ) = ( 2 x. ( ( 1 / ( ( 2 x. 0 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. 0 ) + 1 ) ) ) ) ) |
| 107 | 92 | oveq1d | |- ( N e. NN -> ( ( 2 x. 0 ) + 1 ) = ( 0 + 1 ) ) |
| 108 | 107 6 | eqtr4di | |- ( N e. NN -> ( ( 2 x. 0 ) + 1 ) = 1 ) |
| 109 | 108 | oveq2d | |- ( N e. NN -> ( 1 / ( ( 2 x. 0 ) + 1 ) ) = ( 1 / 1 ) ) |
| 110 | 90 | div1d | |- ( N e. NN -> ( 1 / 1 ) = 1 ) |
| 111 | 109 110 | eqtrd | |- ( N e. NN -> ( 1 / ( ( 2 x. 0 ) + 1 ) ) = 1 ) |
| 112 | 108 | oveq2d | |- ( N e. NN -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. 0 ) + 1 ) ) = ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ 1 ) ) |
| 113 | 101 | exp1d | |- ( N e. NN -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ 1 ) = ( 1 / ( ( 2 x. N ) + 1 ) ) ) |
| 114 | 112 113 | eqtrd | |- ( N e. NN -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. 0 ) + 1 ) ) = ( 1 / ( ( 2 x. N ) + 1 ) ) ) |
| 115 | 111 114 | oveq12d | |- ( N e. NN -> ( ( 1 / ( ( 2 x. 0 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. 0 ) + 1 ) ) ) = ( 1 x. ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) |
| 116 | 101 | mullidd | |- ( N e. NN -> ( 1 x. ( 1 / ( ( 2 x. N ) + 1 ) ) ) = ( 1 / ( ( 2 x. N ) + 1 ) ) ) |
| 117 | 115 116 | eqtrd | |- ( N e. NN -> ( ( 1 / ( ( 2 x. 0 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. 0 ) + 1 ) ) ) = ( 1 / ( ( 2 x. N ) + 1 ) ) ) |
| 118 | 117 | oveq2d | |- ( N e. NN -> ( 2 x. ( ( 1 / ( ( 2 x. 0 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. 0 ) + 1 ) ) ) ) = ( 2 x. ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) |
| 119 | 87 90 100 59 | divassd | |- ( N e. NN -> ( ( 2 x. 1 ) / ( ( 2 x. N ) + 1 ) ) = ( 2 x. ( 1 / ( ( 2 x. N ) + 1 ) ) ) ) |
| 120 | 87 | mulridd | |- ( N e. NN -> ( 2 x. 1 ) = 2 ) |
| 121 | 120 | oveq1d | |- ( N e. NN -> ( ( 2 x. 1 ) / ( ( 2 x. N ) + 1 ) ) = ( 2 / ( ( 2 x. N ) + 1 ) ) ) |
| 122 | 118 119 121 | 3eqtr2d | |- ( N e. NN -> ( 2 x. ( ( 1 / ( ( 2 x. 0 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. 0 ) + 1 ) ) ) ) = ( 2 / ( ( 2 x. N ) + 1 ) ) ) |
| 123 | 78 106 122 | 3eqtrd | |- ( N e. NN -> ( seq 0 ( + , H ) ` 0 ) = ( 2 / ( ( 2 x. N ) + 1 ) ) ) |
| 124 | 123 | oveq2d | |- ( N e. NN -> ( ( log ` ( ( N + 1 ) / N ) ) - ( seq 0 ( + , H ) ` 0 ) ) = ( ( log ` ( ( N + 1 ) / N ) ) - ( 2 / ( ( 2 x. N ) + 1 ) ) ) ) |
| 125 | 75 124 | breqtrd | |- ( N e. NN -> seq 1 ( + , H ) ~~> ( ( log ` ( ( N + 1 ) / N ) ) - ( 2 / ( ( 2 x. N ) + 1 ) ) ) ) |
| 126 | 90 99 | addcld | |- ( N e. NN -> ( 1 + ( 2 x. N ) ) e. CC ) |
| 127 | 126 | halfcld | |- ( N e. NN -> ( ( 1 + ( 2 x. N ) ) / 2 ) e. CC ) |
| 128 | seqex | |- seq 1 ( + , K ) e. _V |
|
| 129 | 128 | a1i | |- ( N e. NN -> seq 1 ( + , K ) e. _V ) |
| 130 | elnnuz | |- ( j e. NN <-> j e. ( ZZ>= ` 1 ) ) |
|
| 131 | 130 | biimpi | |- ( j e. NN -> j e. ( ZZ>= ` 1 ) ) |
| 132 | 131 | adantl | |- ( ( N e. NN /\ j e. NN ) -> j e. ( ZZ>= ` 1 ) ) |
| 133 | oveq2 | |- ( k = n -> ( 2 x. k ) = ( 2 x. n ) ) |
|
| 134 | 133 | oveq1d | |- ( k = n -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. n ) + 1 ) ) |
| 135 | 134 | oveq2d | |- ( k = n -> ( 1 / ( ( 2 x. k ) + 1 ) ) = ( 1 / ( ( 2 x. n ) + 1 ) ) ) |
| 136 | 134 | oveq2d | |- ( k = n -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) = ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) |
| 137 | 135 136 | oveq12d | |- ( k = n -> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) ) = ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) |
| 138 | 137 | oveq2d | |- ( k = n -> ( 2 x. ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. k ) + 1 ) ) ) ) = ( 2 x. ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) ) |
| 139 | elfzuz | |- ( n e. ( 1 ... j ) -> n e. ( ZZ>= ` 1 ) ) |
|
| 140 | elnnuz | |- ( n e. NN <-> n e. ( ZZ>= ` 1 ) ) |
|
| 141 | 140 | biimpri | |- ( n e. ( ZZ>= ` 1 ) -> n e. NN ) |
| 142 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 143 | 139 141 142 | 3syl | |- ( n e. ( 1 ... j ) -> n e. NN0 ) |
| 144 | 143 | adantl | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> n e. NN0 ) |
| 145 | 2cnd | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> 2 e. CC ) |
|
| 146 | 144 | nn0cnd | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> n e. CC ) |
| 147 | 145 146 | mulcld | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 2 x. n ) e. CC ) |
| 148 | 1cnd | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> 1 e. CC ) |
|
| 149 | 147 148 | addcld | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 2 x. n ) + 1 ) e. CC ) |
| 150 | elfznn | |- ( n e. ( 1 ... j ) -> n e. NN ) |
|
| 151 | 0red | |- ( n e. NN -> 0 e. RR ) |
|
| 152 | 1red | |- ( n e. NN -> 1 e. RR ) |
|
| 153 | 27 | a1i | |- ( n e. NN -> 2 e. RR ) |
| 154 | nnre | |- ( n e. NN -> n e. RR ) |
|
| 155 | 153 154 | remulcld | |- ( n e. NN -> ( 2 x. n ) e. RR ) |
| 156 | 155 152 | readdcld | |- ( n e. NN -> ( ( 2 x. n ) + 1 ) e. RR ) |
| 157 | 36 | a1i | |- ( n e. NN -> 0 < 1 ) |
| 158 | 2rp | |- 2 e. RR+ |
|
| 159 | 158 | a1i | |- ( n e. NN -> 2 e. RR+ ) |
| 160 | nnrp | |- ( n e. NN -> n e. RR+ ) |
|
| 161 | 159 160 | rpmulcld | |- ( n e. NN -> ( 2 x. n ) e. RR+ ) |
| 162 | 152 161 | ltaddrp2d | |- ( n e. NN -> 1 < ( ( 2 x. n ) + 1 ) ) |
| 163 | 151 152 156 157 162 | lttrd | |- ( n e. NN -> 0 < ( ( 2 x. n ) + 1 ) ) |
| 164 | 163 | gt0ne0d | |- ( n e. NN -> ( ( 2 x. n ) + 1 ) =/= 0 ) |
| 165 | 150 164 | syl | |- ( n e. ( 1 ... j ) -> ( ( 2 x. n ) + 1 ) =/= 0 ) |
| 166 | 165 | adantl | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 2 x. n ) + 1 ) =/= 0 ) |
| 167 | 149 166 | reccld | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 1 / ( ( 2 x. n ) + 1 ) ) e. CC ) |
| 168 | 101 | ad2antrr | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 1 / ( ( 2 x. N ) + 1 ) ) e. CC ) |
| 169 | 62 | a1i | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> 2 e. NN0 ) |
| 170 | 169 144 | nn0mulcld | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 2 x. n ) e. NN0 ) |
| 171 | 65 | a1i | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> 1 e. NN0 ) |
| 172 | 170 171 | nn0addcld | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 2 x. n ) + 1 ) e. NN0 ) |
| 173 | 168 172 | expcld | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) e. CC ) |
| 174 | 167 173 | mulcld | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) e. CC ) |
| 175 | 145 174 | mulcld | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 2 x. ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) e. CC ) |
| 176 | 3 138 144 175 | fvmptd3 | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( H ` n ) = ( 2 x. ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) ) |
| 177 | 176 175 | eqeltrd | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( H ` n ) e. CC ) |
| 178 | addcl | |- ( ( n e. CC /\ i e. CC ) -> ( n + i ) e. CC ) |
|
| 179 | 178 | adantl | |- ( ( ( N e. NN /\ j e. NN ) /\ ( n e. CC /\ i e. CC ) ) -> ( n + i ) e. CC ) |
| 180 | 132 177 179 | seqcl | |- ( ( N e. NN /\ j e. NN ) -> ( seq 1 ( + , H ) ` j ) e. CC ) |
| 181 | 1cnd | |- ( ( ( N e. NN /\ j e. NN ) /\ ( n e. CC /\ i e. CC ) ) -> 1 e. CC ) |
|
| 182 | 2cnd | |- ( ( ( N e. NN /\ j e. NN ) /\ ( n e. CC /\ i e. CC ) ) -> 2 e. CC ) |
|
| 183 | 43 | ad2antrr | |- ( ( ( N e. NN /\ j e. NN ) /\ ( n e. CC /\ i e. CC ) ) -> N e. CC ) |
| 184 | 182 183 | mulcld | |- ( ( ( N e. NN /\ j e. NN ) /\ ( n e. CC /\ i e. CC ) ) -> ( 2 x. N ) e. CC ) |
| 185 | 181 184 | addcld | |- ( ( ( N e. NN /\ j e. NN ) /\ ( n e. CC /\ i e. CC ) ) -> ( 1 + ( 2 x. N ) ) e. CC ) |
| 186 | 185 | halfcld | |- ( ( ( N e. NN /\ j e. NN ) /\ ( n e. CC /\ i e. CC ) ) -> ( ( 1 + ( 2 x. N ) ) / 2 ) e. CC ) |
| 187 | simprl | |- ( ( ( N e. NN /\ j e. NN ) /\ ( n e. CC /\ i e. CC ) ) -> n e. CC ) |
|
| 188 | simprr | |- ( ( ( N e. NN /\ j e. NN ) /\ ( n e. CC /\ i e. CC ) ) -> i e. CC ) |
|
| 189 | 186 187 188 | adddid | |- ( ( ( N e. NN /\ j e. NN ) /\ ( n e. CC /\ i e. CC ) ) -> ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( n + i ) ) = ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. n ) + ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. i ) ) ) |
| 190 | 133 | oveq2d | |- ( k = n -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) = ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) ) |
| 191 | 135 190 | oveq12d | |- ( k = n -> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) ) = ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) ) ) |
| 192 | 150 | adantl | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> n e. NN ) |
| 193 | 168 170 | expcld | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) e. CC ) |
| 194 | 167 193 | mulcld | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) ) e. CC ) |
| 195 | 2 191 192 194 | fvmptd3 | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( K ` n ) = ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) ) ) |
| 196 | 126 | ad2antrr | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 1 + ( 2 x. N ) ) e. CC ) |
| 197 | 2ne0 | |- 2 =/= 0 |
|
| 198 | 197 | a1i | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> 2 =/= 0 ) |
| 199 | 196 145 175 198 | div32d | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( 2 x. ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) ) = ( ( 1 + ( 2 x. N ) ) x. ( ( 2 x. ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) / 2 ) ) ) |
| 200 | 174 145 198 | divcan3d | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 2 x. ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) / 2 ) = ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) |
| 201 | 200 | oveq2d | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 + ( 2 x. N ) ) x. ( ( 2 x. ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) / 2 ) ) = ( ( 1 + ( 2 x. N ) ) x. ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) ) |
| 202 | 196 167 173 | mul12d | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 + ( 2 x. N ) ) x. ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) = ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 + ( 2 x. N ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) ) |
| 203 | 100 | ad2antrr | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 2 x. N ) + 1 ) e. CC ) |
| 204 | 59 | ad2antrr | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 2 x. N ) + 1 ) =/= 0 ) |
| 205 | 172 | nn0zd | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 2 x. n ) + 1 ) e. ZZ ) |
| 206 | 203 204 205 | exprecd | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) = ( 1 / ( ( ( 2 x. N ) + 1 ) ^ ( ( 2 x. n ) + 1 ) ) ) ) |
| 207 | 206 | oveq2d | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 + ( 2 x. N ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) = ( ( 1 + ( 2 x. N ) ) x. ( 1 / ( ( ( 2 x. N ) + 1 ) ^ ( ( 2 x. n ) + 1 ) ) ) ) ) |
| 208 | 203 172 | expcld | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( 2 x. N ) + 1 ) ^ ( ( 2 x. n ) + 1 ) ) e. CC ) |
| 209 | 203 204 205 | expne0d | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( 2 x. N ) + 1 ) ^ ( ( 2 x. n ) + 1 ) ) =/= 0 ) |
| 210 | 196 208 209 | divrecd | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 + ( 2 x. N ) ) / ( ( ( 2 x. N ) + 1 ) ^ ( ( 2 x. n ) + 1 ) ) ) = ( ( 1 + ( 2 x. N ) ) x. ( 1 / ( ( ( 2 x. N ) + 1 ) ^ ( ( 2 x. n ) + 1 ) ) ) ) ) |
| 211 | 43 | ad2antrr | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> N e. CC ) |
| 212 | 145 211 | mulcld | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 2 x. N ) e. CC ) |
| 213 | 148 212 | addcomd | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 1 + ( 2 x. N ) ) = ( ( 2 x. N ) + 1 ) ) |
| 214 | 203 170 | expcld | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) e. CC ) |
| 215 | 214 203 | mulcomd | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) x. ( ( 2 x. N ) + 1 ) ) = ( ( ( 2 x. N ) + 1 ) x. ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) ) ) |
| 216 | 213 215 | oveq12d | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 + ( 2 x. N ) ) / ( ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) x. ( ( 2 x. N ) + 1 ) ) ) = ( ( ( 2 x. N ) + 1 ) / ( ( ( 2 x. N ) + 1 ) x. ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) ) ) ) |
| 217 | 203 170 | expp1d | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( 2 x. N ) + 1 ) ^ ( ( 2 x. n ) + 1 ) ) = ( ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) x. ( ( 2 x. N ) + 1 ) ) ) |
| 218 | 217 | oveq2d | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 + ( 2 x. N ) ) / ( ( ( 2 x. N ) + 1 ) ^ ( ( 2 x. n ) + 1 ) ) ) = ( ( 1 + ( 2 x. N ) ) / ( ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) x. ( ( 2 x. N ) + 1 ) ) ) ) |
| 219 | 2z | |- 2 e. ZZ |
|
| 220 | 219 | a1i | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> 2 e. ZZ ) |
| 221 | 144 | nn0zd | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> n e. ZZ ) |
| 222 | 220 221 | zmulcld | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 2 x. n ) e. ZZ ) |
| 223 | 203 204 222 | expne0d | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) =/= 0 ) |
| 224 | 203 203 214 204 223 | divdiv1d | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) / ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) ) = ( ( ( 2 x. N ) + 1 ) / ( ( ( 2 x. N ) + 1 ) x. ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) ) ) ) |
| 225 | 216 218 224 | 3eqtr4d | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 + ( 2 x. N ) ) / ( ( ( 2 x. N ) + 1 ) ^ ( ( 2 x. n ) + 1 ) ) ) = ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) / ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) ) ) |
| 226 | 207 210 225 | 3eqtr2d | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 + ( 2 x. N ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) = ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) / ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) ) ) |
| 227 | 226 | oveq2d | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 + ( 2 x. N ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) = ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) / ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) ) ) ) |
| 228 | 203 204 | dividd | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) = 1 ) |
| 229 | 1exp | |- ( ( 2 x. n ) e. ZZ -> ( 1 ^ ( 2 x. n ) ) = 1 ) |
|
| 230 | 222 229 | syl | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 1 ^ ( 2 x. n ) ) = 1 ) |
| 231 | 228 230 | eqtr4d | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) = ( 1 ^ ( 2 x. n ) ) ) |
| 232 | 231 | oveq1d | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) / ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) ) = ( ( 1 ^ ( 2 x. n ) ) / ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) ) ) |
| 233 | 148 203 204 170 | expdivd | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) = ( ( 1 ^ ( 2 x. n ) ) / ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) ) ) |
| 234 | 232 233 | eqtr4d | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) / ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) ) = ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) ) |
| 235 | 234 | oveq2d | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( ( ( 2 x. N ) + 1 ) / ( ( 2 x. N ) + 1 ) ) / ( ( ( 2 x. N ) + 1 ) ^ ( 2 x. n ) ) ) ) = ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) ) ) |
| 236 | 202 227 235 | 3eqtrd | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( 1 + ( 2 x. N ) ) x. ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) = ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) ) ) |
| 237 | 199 201 236 | 3eqtrd | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( 2 x. ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) ) = ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. n ) ) ) ) |
| 238 | 176 | eqcomd | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 2 x. ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) = ( H ` n ) ) |
| 239 | 238 | oveq2d | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( 2 x. ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( ( 2 x. n ) + 1 ) ) ) ) ) = ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( H ` n ) ) ) |
| 240 | 195 237 239 | 3eqtr2d | |- ( ( ( N e. NN /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( K ` n ) = ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( H ` n ) ) ) |
| 241 | 179 189 132 177 240 | seqdistr | |- ( ( N e. NN /\ j e. NN ) -> ( seq 1 ( + , K ) ` j ) = ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( seq 1 ( + , H ) ` j ) ) ) |
| 242 | 4 5 125 127 129 180 241 | climmulc2 | |- ( N e. NN -> seq 1 ( + , K ) ~~> ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( ( log ` ( ( N + 1 ) / N ) ) - ( 2 / ( ( 2 x. N ) + 1 ) ) ) ) ) |
| 243 | 90 99 | addcomd | |- ( N e. NN -> ( 1 + ( 2 x. N ) ) = ( ( 2 x. N ) + 1 ) ) |
| 244 | 243 | oveq1d | |- ( N e. NN -> ( ( 1 + ( 2 x. N ) ) / 2 ) = ( ( ( 2 x. N ) + 1 ) / 2 ) ) |
| 245 | 244 | oveq1d | |- ( N e. NN -> ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( ( log ` ( ( N + 1 ) / N ) ) - ( 2 / ( ( 2 x. N ) + 1 ) ) ) ) = ( ( ( ( 2 x. N ) + 1 ) / 2 ) x. ( ( log ` ( ( N + 1 ) / N ) ) - ( 2 / ( ( 2 x. N ) + 1 ) ) ) ) ) |
| 246 | 244 127 | eqeltrrd | |- ( N e. NN -> ( ( ( 2 x. N ) + 1 ) / 2 ) e. CC ) |
| 247 | 43 90 | addcld | |- ( N e. NN -> ( N + 1 ) e. CC ) |
| 248 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
| 249 | 247 43 248 | divcld | |- ( N e. NN -> ( ( N + 1 ) / N ) e. CC ) |
| 250 | 49 51 | readdcld | |- ( N e. NN -> ( N + 1 ) e. RR ) |
| 251 | 49 | ltp1d | |- ( N e. NN -> N < ( N + 1 ) ) |
| 252 | 53 49 250 54 251 | lttrd | |- ( N e. NN -> 0 < ( N + 1 ) ) |
| 253 | 252 | gt0ne0d | |- ( N e. NN -> ( N + 1 ) =/= 0 ) |
| 254 | 247 43 253 248 | divne0d | |- ( N e. NN -> ( ( N + 1 ) / N ) =/= 0 ) |
| 255 | 249 254 | logcld | |- ( N e. NN -> ( log ` ( ( N + 1 ) / N ) ) e. CC ) |
| 256 | 87 100 59 | divcld | |- ( N e. NN -> ( 2 / ( ( 2 x. N ) + 1 ) ) e. CC ) |
| 257 | 246 255 256 | subdid | |- ( N e. NN -> ( ( ( ( 2 x. N ) + 1 ) / 2 ) x. ( ( log ` ( ( N + 1 ) / N ) ) - ( 2 / ( ( 2 x. N ) + 1 ) ) ) ) = ( ( ( ( ( 2 x. N ) + 1 ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - ( ( ( ( 2 x. N ) + 1 ) / 2 ) x. ( 2 / ( ( 2 x. N ) + 1 ) ) ) ) ) |
| 258 | 99 90 | addcomd | |- ( N e. NN -> ( ( 2 x. N ) + 1 ) = ( 1 + ( 2 x. N ) ) ) |
| 259 | 258 | oveq1d | |- ( N e. NN -> ( ( ( 2 x. N ) + 1 ) / 2 ) = ( ( 1 + ( 2 x. N ) ) / 2 ) ) |
| 260 | 259 | oveq1d | |- ( N e. NN -> ( ( ( ( 2 x. N ) + 1 ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) = ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) ) |
| 261 | 197 | a1i | |- ( N e. NN -> 2 =/= 0 ) |
| 262 | 100 87 59 261 | divcan6d | |- ( N e. NN -> ( ( ( ( 2 x. N ) + 1 ) / 2 ) x. ( 2 / ( ( 2 x. N ) + 1 ) ) ) = 1 ) |
| 263 | 260 262 | oveq12d | |- ( N e. NN -> ( ( ( ( ( 2 x. N ) + 1 ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - ( ( ( ( 2 x. N ) + 1 ) / 2 ) x. ( 2 / ( ( 2 x. N ) + 1 ) ) ) ) = ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) ) |
| 264 | 245 257 263 | 3eqtrd | |- ( N e. NN -> ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( ( log ` ( ( N + 1 ) / N ) ) - ( 2 / ( ( 2 x. N ) + 1 ) ) ) ) = ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) ) |
| 265 | 242 264 | breqtrd | |- ( N e. NN -> seq 1 ( + , K ) ~~> ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) ) |
| 266 | oveq2 | |- ( n = N -> ( 2 x. n ) = ( 2 x. N ) ) |
|
| 267 | 266 | oveq2d | |- ( n = N -> ( 1 + ( 2 x. n ) ) = ( 1 + ( 2 x. N ) ) ) |
| 268 | 267 | oveq1d | |- ( n = N -> ( ( 1 + ( 2 x. n ) ) / 2 ) = ( ( 1 + ( 2 x. N ) ) / 2 ) ) |
| 269 | oveq1 | |- ( n = N -> ( n + 1 ) = ( N + 1 ) ) |
|
| 270 | id | |- ( n = N -> n = N ) |
|
| 271 | 269 270 | oveq12d | |- ( n = N -> ( ( n + 1 ) / n ) = ( ( N + 1 ) / N ) ) |
| 272 | 271 | fveq2d | |- ( n = N -> ( log ` ( ( n + 1 ) / n ) ) = ( log ` ( ( N + 1 ) / N ) ) ) |
| 273 | 268 272 | oveq12d | |- ( n = N -> ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) = ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) ) |
| 274 | 273 | oveq1d | |- ( n = N -> ( ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) - 1 ) = ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) ) |
| 275 | id | |- ( N e. NN -> N e. NN ) |
|
| 276 | 127 255 | mulcld | |- ( N e. NN -> ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) e. CC ) |
| 277 | 276 90 | subcld | |- ( N e. NN -> ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) |
| 278 | 1 274 275 277 | fvmptd3 | |- ( N e. NN -> ( J ` N ) = ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) ) |
| 279 | 265 278 | breqtrrd | |- ( N e. NN -> seq 1 ( + , K ) ~~> ( J ` N ) ) |