This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distributive property for series. (Contributed by Mario Carneiro, 28-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqdistr.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| seqdistr.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝐶 𝑇 ( 𝑥 + 𝑦 ) ) = ( ( 𝐶 𝑇 𝑥 ) + ( 𝐶 𝑇 𝑦 ) ) ) | ||
| seqdistr.3 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| seqdistr.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝑆 ) | ||
| seqdistr.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐶 𝑇 ( 𝐺 ‘ 𝑥 ) ) ) | ||
| Assertion | seqdistr | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( 𝐶 𝑇 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqdistr.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| 2 | seqdistr.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝐶 𝑇 ( 𝑥 + 𝑦 ) ) = ( ( 𝐶 𝑇 𝑥 ) + ( 𝐶 𝑇 𝑦 ) ) ) | |
| 3 | seqdistr.3 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 4 | seqdistr.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝑆 ) | |
| 5 | seqdistr.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐶 𝑇 ( 𝐺 ‘ 𝑥 ) ) ) | |
| 6 | oveq2 | ⊢ ( 𝑧 = ( 𝑥 + 𝑦 ) → ( 𝐶 𝑇 𝑧 ) = ( 𝐶 𝑇 ( 𝑥 + 𝑦 ) ) ) | |
| 7 | eqid | ⊢ ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) = ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) | |
| 8 | ovex | ⊢ ( 𝐶 𝑇 ( 𝑥 + 𝑦 ) ) ∈ V | |
| 9 | 6 7 8 | fvmpt | ⊢ ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ ( 𝑥 + 𝑦 ) ) = ( 𝐶 𝑇 ( 𝑥 + 𝑦 ) ) ) |
| 10 | 1 9 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ ( 𝑥 + 𝑦 ) ) = ( 𝐶 𝑇 ( 𝑥 + 𝑦 ) ) ) |
| 11 | oveq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝐶 𝑇 𝑧 ) = ( 𝐶 𝑇 𝑥 ) ) | |
| 12 | ovex | ⊢ ( 𝐶 𝑇 𝑥 ) ∈ V | |
| 13 | 11 7 12 | fvmpt | ⊢ ( 𝑥 ∈ 𝑆 → ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ 𝑥 ) = ( 𝐶 𝑇 𝑥 ) ) |
| 14 | 13 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ 𝑥 ) = ( 𝐶 𝑇 𝑥 ) ) |
| 15 | oveq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝐶 𝑇 𝑧 ) = ( 𝐶 𝑇 𝑦 ) ) | |
| 16 | ovex | ⊢ ( 𝐶 𝑇 𝑦 ) ∈ V | |
| 17 | 15 7 16 | fvmpt | ⊢ ( 𝑦 ∈ 𝑆 → ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ 𝑦 ) = ( 𝐶 𝑇 𝑦 ) ) |
| 18 | 17 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ 𝑦 ) = ( 𝐶 𝑇 𝑦 ) ) |
| 19 | 14 18 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ 𝑥 ) + ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ 𝑦 ) ) = ( ( 𝐶 𝑇 𝑥 ) + ( 𝐶 𝑇 𝑦 ) ) ) |
| 20 | 2 10 19 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ 𝑥 ) + ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ 𝑦 ) ) ) |
| 21 | oveq2 | ⊢ ( 𝑧 = ( 𝐺 ‘ 𝑥 ) → ( 𝐶 𝑇 𝑧 ) = ( 𝐶 𝑇 ( 𝐺 ‘ 𝑥 ) ) ) | |
| 22 | ovex | ⊢ ( 𝐶 𝑇 ( 𝐺 ‘ 𝑥 ) ) ∈ V | |
| 23 | 21 7 22 | fvmpt | ⊢ ( ( 𝐺 ‘ 𝑥 ) ∈ 𝑆 → ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ ( 𝐺 ‘ 𝑥 ) ) = ( 𝐶 𝑇 ( 𝐺 ‘ 𝑥 ) ) ) |
| 24 | 4 23 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ ( 𝐺 ‘ 𝑥 ) ) = ( 𝐶 𝑇 ( 𝐺 ‘ 𝑥 ) ) ) |
| 25 | 24 5 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ ( 𝐺 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 26 | 1 4 3 20 25 | seqhomo | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| 27 | 3 4 1 | seqcl | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ∈ 𝑆 ) |
| 28 | oveq2 | ⊢ ( 𝑧 = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) → ( 𝐶 𝑇 𝑧 ) = ( 𝐶 𝑇 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) | |
| 29 | ovex | ⊢ ( 𝐶 𝑇 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ∈ V | |
| 30 | 28 7 29 | fvmpt | ⊢ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ∈ 𝑆 → ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) = ( 𝐶 𝑇 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
| 31 | 27 30 | syl | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) = ( 𝐶 𝑇 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
| 32 | 26 31 | eqtr3d | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( 𝐶 𝑇 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |