This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real greater than 1 raised to a positive integer is greater than 1. (Contributed by NM, 13-Feb-2005) (Revised by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expgt1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 1 < ( 𝐴 ↑ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re | ⊢ 1 ∈ ℝ | |
| 2 | 1 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 1 ∈ ℝ ) |
| 3 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 𝐴 ∈ ℝ ) | |
| 4 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 𝑁 ∈ ℕ ) | |
| 5 | 4 | nnnn0d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 𝑁 ∈ ℕ0 ) |
| 6 | reexpcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ ) | |
| 7 | 3 5 6 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ ) |
| 8 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 1 < 𝐴 ) | |
| 9 | nnm1nn0 | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) | |
| 10 | 4 9 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 11 | ltle | ⊢ ( ( 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 1 < 𝐴 → 1 ≤ 𝐴 ) ) | |
| 12 | 1 3 11 | sylancr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → ( 1 < 𝐴 → 1 ≤ 𝐴 ) ) |
| 13 | 8 12 | mpd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 1 ≤ 𝐴 ) |
| 14 | expge1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑁 − 1 ) ∈ ℕ0 ∧ 1 ≤ 𝐴 ) → 1 ≤ ( 𝐴 ↑ ( 𝑁 − 1 ) ) ) | |
| 15 | 3 10 13 14 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 1 ≤ ( 𝐴 ↑ ( 𝑁 − 1 ) ) ) |
| 16 | reexpcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑁 − 1 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑁 − 1 ) ) ∈ ℝ ) | |
| 17 | 3 10 16 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → ( 𝐴 ↑ ( 𝑁 − 1 ) ) ∈ ℝ ) |
| 18 | 0red | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 0 ∈ ℝ ) | |
| 19 | 0lt1 | ⊢ 0 < 1 | |
| 20 | 19 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 0 < 1 ) |
| 21 | 18 2 3 20 8 | lttrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 0 < 𝐴 ) |
| 22 | lemul1 | ⊢ ( ( 1 ∈ ℝ ∧ ( 𝐴 ↑ ( 𝑁 − 1 ) ) ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 1 ≤ ( 𝐴 ↑ ( 𝑁 − 1 ) ) ↔ ( 1 · 𝐴 ) ≤ ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) · 𝐴 ) ) ) | |
| 23 | 2 17 3 21 22 | syl112anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → ( 1 ≤ ( 𝐴 ↑ ( 𝑁 − 1 ) ) ↔ ( 1 · 𝐴 ) ≤ ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) · 𝐴 ) ) ) |
| 24 | 15 23 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → ( 1 · 𝐴 ) ≤ ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) · 𝐴 ) ) |
| 25 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 26 | 25 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 𝐴 ∈ ℂ ) |
| 27 | 26 | mullidd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → ( 1 · 𝐴 ) = 𝐴 ) |
| 28 | 27 | eqcomd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 𝐴 = ( 1 · 𝐴 ) ) |
| 29 | expm1t | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) = ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) · 𝐴 ) ) | |
| 30 | 26 4 29 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → ( 𝐴 ↑ 𝑁 ) = ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) · 𝐴 ) ) |
| 31 | 24 28 30 | 3brtr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 𝐴 ≤ ( 𝐴 ↑ 𝑁 ) ) |
| 32 | 2 3 7 8 31 | ltletrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 1 < ( 𝐴 ↑ 𝑁 ) ) |