This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Product of exponents law for positive integer exponentiation. Proposition 10-4.2(b) of Gleason p. 135, restricted to nonnegative integer exponents. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | expcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| expcld.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| expaddd.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) | ||
| Assertion | expmuld | ⊢ ( 𝜑 → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | expcld.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 3 | expaddd.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) | |
| 4 | expmul | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) | |
| 5 | 1 3 2 4 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) |