This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a set is empty. (Contributed by Paul Chapman, 26-Oct-2012) (Revised by Mario Carneiro, 27-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hasheq0 | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre | ⊢ +∞ ∉ ℝ | |
| 2 | 1 | neli | ⊢ ¬ +∞ ∈ ℝ |
| 3 | hashinf | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) | |
| 4 | 3 | eleq1d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) ∈ ℝ ↔ +∞ ∈ ℝ ) ) |
| 5 | 2 4 | mtbiri | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ¬ ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
| 6 | id | ⊢ ( ( ♯ ‘ 𝐴 ) = 0 → ( ♯ ‘ 𝐴 ) = 0 ) | |
| 7 | 0re | ⊢ 0 ∈ ℝ | |
| 8 | 6 7 | eqeltrdi | ⊢ ( ( ♯ ‘ 𝐴 ) = 0 → ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
| 9 | 5 8 | nsyl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ¬ ( ♯ ‘ 𝐴 ) = 0 ) |
| 10 | id | ⊢ ( 𝐴 = ∅ → 𝐴 = ∅ ) | |
| 11 | 0fi | ⊢ ∅ ∈ Fin | |
| 12 | 10 11 | eqeltrdi | ⊢ ( 𝐴 = ∅ → 𝐴 ∈ Fin ) |
| 13 | 12 | con3i | ⊢ ( ¬ 𝐴 ∈ Fin → ¬ 𝐴 = ∅ ) |
| 14 | 13 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ¬ 𝐴 = ∅ ) |
| 15 | 9 14 | 2falsed | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) ) |
| 16 | 15 | ex | ⊢ ( 𝐴 ∈ 𝑉 → ( ¬ 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) ) ) |
| 17 | hashen | ⊢ ( ( 𝐴 ∈ Fin ∧ ∅ ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ∅ ) ↔ 𝐴 ≈ ∅ ) ) | |
| 18 | 11 17 | mpan2 | ⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ∅ ) ↔ 𝐴 ≈ ∅ ) ) |
| 19 | fz10 | ⊢ ( 1 ... 0 ) = ∅ | |
| 20 | 19 | fveq2i | ⊢ ( ♯ ‘ ( 1 ... 0 ) ) = ( ♯ ‘ ∅ ) |
| 21 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 22 | hashfz1 | ⊢ ( 0 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 0 ) ) = 0 ) | |
| 23 | 21 22 | ax-mp | ⊢ ( ♯ ‘ ( 1 ... 0 ) ) = 0 |
| 24 | 20 23 | eqtr3i | ⊢ ( ♯ ‘ ∅ ) = 0 |
| 25 | 24 | eqeq2i | ⊢ ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ∅ ) ↔ ( ♯ ‘ 𝐴 ) = 0 ) |
| 26 | en0 | ⊢ ( 𝐴 ≈ ∅ ↔ 𝐴 = ∅ ) | |
| 27 | 18 25 26 | 3bitr3g | ⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) ) |
| 28 | 16 27 | pm2.61d2 | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) ) |