This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of the Pigeonhole Principle using equality. Equivalent of phpeqd expressed using the hash function. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phphashd.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| phphashd.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | ||
| phphashd.3 | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) | ||
| Assertion | phphashd | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phphashd.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | phphashd.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | |
| 3 | phphashd.3 | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) | |
| 4 | 1 2 | ssfid | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 5 | hashen | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ↔ 𝐴 ≈ 𝐵 ) ) | |
| 6 | 1 4 5 | syl2anc | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ↔ 𝐴 ≈ 𝐵 ) ) |
| 7 | 3 6 | mpbid | ⊢ ( 𝜑 → 𝐴 ≈ 𝐵 ) |
| 8 | 1 2 7 | phpeqd | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |