This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum metric on RR ^ I is equivalent to the Rn metric. (Contributed by Jeff Madsen, 15-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrnequiv.y | ⊢ 𝑌 = ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) | |
| rrnequiv.d | ⊢ 𝐷 = ( dist ‘ 𝑌 ) | ||
| rrnequiv.1 | ⊢ 𝑋 = ( ℝ ↑m 𝐼 ) | ||
| rrnequiv.i | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | ||
| Assertion | rrnequiv | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 𝐷 𝐺 ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ∧ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrnequiv.y | ⊢ 𝑌 = ( ( ℂfld ↾s ℝ ) ↑s 𝐼 ) | |
| 2 | rrnequiv.d | ⊢ 𝐷 = ( dist ‘ 𝑌 ) | |
| 3 | rrnequiv.1 | ⊢ 𝑋 = ( ℝ ↑m 𝐼 ) | |
| 4 | rrnequiv.i | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | |
| 5 | ovex | ⊢ ( ℂfld ↾s ℝ ) ∈ V | |
| 6 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐼 ∈ Fin ) |
| 7 | reex | ⊢ ℝ ∈ V | |
| 8 | eqid | ⊢ ( ℂfld ↾s ℝ ) = ( ℂfld ↾s ℝ ) | |
| 9 | eqid | ⊢ ( Scalar ‘ ℂfld ) = ( Scalar ‘ ℂfld ) | |
| 10 | 8 9 | resssca | ⊢ ( ℝ ∈ V → ( Scalar ‘ ℂfld ) = ( Scalar ‘ ( ℂfld ↾s ℝ ) ) ) |
| 11 | 7 10 | ax-mp | ⊢ ( Scalar ‘ ℂfld ) = ( Scalar ‘ ( ℂfld ↾s ℝ ) ) |
| 12 | 1 11 | pwsval | ⊢ ( ( ( ℂfld ↾s ℝ ) ∈ V ∧ 𝐼 ∈ Fin ) → 𝑌 = ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) |
| 13 | 5 6 12 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝑌 = ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) |
| 14 | 13 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( dist ‘ 𝑌 ) = ( dist ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) |
| 15 | 2 14 | eqtrid | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐷 = ( dist ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) |
| 16 | 15 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 𝐷 𝐺 ) = ( 𝐹 ( dist ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) 𝐺 ) ) |
| 17 | fconstmpt | ⊢ ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) = ( 𝑘 ∈ 𝐼 ↦ ( ℂfld ↾s ℝ ) ) | |
| 18 | 17 | oveq2i | ⊢ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) = ( ( Scalar ‘ ℂfld ) Xs ( 𝑘 ∈ 𝐼 ↦ ( ℂfld ↾s ℝ ) ) ) |
| 19 | eqid | ⊢ ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) = ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) | |
| 20 | fvexd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( Scalar ‘ ℂfld ) ∈ V ) | |
| 21 | 5 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ℂfld ↾s ℝ ) ∈ V ) |
| 22 | 21 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ∀ 𝑘 ∈ 𝐼 ( ℂfld ↾s ℝ ) ∈ V ) |
| 23 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐹 ∈ 𝑋 ) | |
| 24 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 25 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 26 | 8 25 | ressbas2 | ⊢ ( ℝ ⊆ ℂ → ℝ = ( Base ‘ ( ℂfld ↾s ℝ ) ) ) |
| 27 | 24 26 | ax-mp | ⊢ ℝ = ( Base ‘ ( ℂfld ↾s ℝ ) ) |
| 28 | 1 27 | pwsbas | ⊢ ( ( ( ℂfld ↾s ℝ ) ∈ V ∧ 𝐼 ∈ Fin ) → ( ℝ ↑m 𝐼 ) = ( Base ‘ 𝑌 ) ) |
| 29 | 5 6 28 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ℝ ↑m 𝐼 ) = ( Base ‘ 𝑌 ) ) |
| 30 | 13 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( Base ‘ 𝑌 ) = ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) |
| 31 | 29 30 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ℝ ↑m 𝐼 ) = ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) |
| 32 | 3 31 | eqtrid | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝑋 = ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) |
| 33 | 23 32 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐹 ∈ ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) |
| 34 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐺 ∈ 𝑋 ) | |
| 35 | 34 32 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐺 ∈ ( Base ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) ) |
| 36 | cnfldds | ⊢ ( abs ∘ − ) = ( dist ‘ ℂfld ) | |
| 37 | 8 36 | ressds | ⊢ ( ℝ ∈ V → ( abs ∘ − ) = ( dist ‘ ( ℂfld ↾s ℝ ) ) ) |
| 38 | 7 37 | ax-mp | ⊢ ( abs ∘ − ) = ( dist ‘ ( ℂfld ↾s ℝ ) ) |
| 39 | 38 | reseq1i | ⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( dist ‘ ( ℂfld ↾s ℝ ) ) ↾ ( ℝ × ℝ ) ) |
| 40 | eqid | ⊢ ( dist ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) = ( dist ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) | |
| 41 | 18 19 20 6 22 33 35 27 39 40 | prdsdsval3 | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 ( dist ‘ ( ( Scalar ‘ ℂfld ) Xs ( 𝐼 × { ( ℂfld ↾s ℝ ) } ) ) ) 𝐺 ) = sup ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 42 | 16 41 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 𝐷 𝐺 ) = sup ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 43 | eqid | ⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | |
| 44 | 3 43 | rrndstprj1 | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑘 ∈ 𝐼 ) ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
| 45 | 44 | an32s | ⊢ ( ( ( 𝐼 ∈ Fin ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
| 46 | 4 45 | sylanl1 | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
| 47 | 46 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ∀ 𝑘 ∈ 𝐼 ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
| 48 | ovex | ⊢ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ V | |
| 49 | 48 | rgenw | ⊢ ∀ 𝑘 ∈ 𝐼 ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ V |
| 50 | eqid | ⊢ ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) | |
| 51 | breq1 | ⊢ ( 𝑧 = ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) → ( 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) ) | |
| 52 | 50 51 | ralrnmptw | ⊢ ( ∀ 𝑘 ∈ 𝐼 ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ V → ( ∀ 𝑧 ∈ ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ↔ ∀ 𝑘 ∈ 𝐼 ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) ) |
| 53 | 49 52 | ax-mp | ⊢ ( ∀ 𝑧 ∈ ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ↔ ∀ 𝑘 ∈ 𝐼 ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
| 54 | 47 53 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ∀ 𝑧 ∈ ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
| 55 | 3 | rrnmet | ⊢ ( 𝐼 ∈ Fin → ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ) |
| 56 | 6 55 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ) |
| 57 | metge0 | ⊢ ( ( ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 0 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) | |
| 58 | 56 23 34 57 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 0 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
| 59 | elsni | ⊢ ( 𝑧 ∈ { 0 } → 𝑧 = 0 ) | |
| 60 | 59 | breq1d | ⊢ ( 𝑧 ∈ { 0 } → ( 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ↔ 0 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) ) |
| 61 | 58 60 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝑧 ∈ { 0 } → 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) ) |
| 62 | 61 | ralrimiv | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ∀ 𝑧 ∈ { 0 } 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
| 63 | ralunb | ⊢ ( ∀ 𝑧 ∈ ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ↔ ( ∀ 𝑧 ∈ ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ∧ ∀ 𝑧 ∈ { 0 } 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) ) | |
| 64 | 54 62 63 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ∀ 𝑧 ∈ ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
| 65 | 18 19 20 6 22 27 33 | prdsbascl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ∀ 𝑘 ∈ 𝐼 ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 66 | 65 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 67 | 18 19 20 6 22 27 35 | prdsbascl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ∀ 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 68 | 67 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 69 | 43 | remet | ⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( Met ‘ ℝ ) |
| 70 | metcl | ⊢ ( ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( Met ‘ ℝ ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) | |
| 71 | 69 70 | mp3an1 | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
| 72 | 66 68 71 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
| 73 | 72 | fmpttd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) : 𝐼 ⟶ ℝ ) |
| 74 | 73 | frnd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ⊆ ℝ ) |
| 75 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 76 | 74 75 | sstrdi | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ⊆ ℝ* ) |
| 77 | 0xr | ⊢ 0 ∈ ℝ* | |
| 78 | 77 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 0 ∈ ℝ* ) |
| 79 | 78 | snssd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → { 0 } ⊆ ℝ* ) |
| 80 | 76 79 | unssd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) ⊆ ℝ* ) |
| 81 | metcl | ⊢ ( ( ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ∈ ℝ ) | |
| 82 | 56 23 34 81 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ∈ ℝ ) |
| 83 | 75 82 | sselid | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ∈ ℝ* ) |
| 84 | supxrleub | ⊢ ( ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) ⊆ ℝ* ∧ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ∈ ℝ* ) → ( sup ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) , ℝ* , < ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ↔ ∀ 𝑧 ∈ ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) ) | |
| 85 | 80 83 84 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( sup ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) , ℝ* , < ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ↔ ∀ 𝑧 ∈ ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) 𝑧 ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) ) |
| 86 | 64 85 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → sup ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) , ℝ* , < ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
| 87 | 42 86 | eqbrtrd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 𝐷 𝐺 ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
| 88 | rzal | ⊢ ( 𝐼 = ∅ → ∀ 𝑘 ∈ 𝐼 ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 89 | 23 3 | eleqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐹 ∈ ( ℝ ↑m 𝐼 ) ) |
| 90 | elmapi | ⊢ ( 𝐹 ∈ ( ℝ ↑m 𝐼 ) → 𝐹 : 𝐼 ⟶ ℝ ) | |
| 91 | ffn | ⊢ ( 𝐹 : 𝐼 ⟶ ℝ → 𝐹 Fn 𝐼 ) | |
| 92 | 89 90 91 | 3syl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐹 Fn 𝐼 ) |
| 93 | 34 3 | eleqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐺 ∈ ( ℝ ↑m 𝐼 ) ) |
| 94 | elmapi | ⊢ ( 𝐺 ∈ ( ℝ ↑m 𝐼 ) → 𝐺 : 𝐼 ⟶ ℝ ) | |
| 95 | ffn | ⊢ ( 𝐺 : 𝐼 ⟶ ℝ → 𝐺 Fn 𝐼 ) | |
| 96 | 93 94 95 | 3syl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐺 Fn 𝐼 ) |
| 97 | eqfnfv | ⊢ ( ( 𝐹 Fn 𝐼 ∧ 𝐺 Fn 𝐼 ) → ( 𝐹 = 𝐺 ↔ ∀ 𝑘 ∈ 𝐼 ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) ) | |
| 98 | 92 96 97 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 = 𝐺 ↔ ∀ 𝑘 ∈ 𝐼 ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) ) |
| 99 | 88 98 | imbitrrid | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐼 = ∅ → 𝐹 = 𝐺 ) ) |
| 100 | 99 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐼 = ∅ ) → 𝐹 = 𝐺 ) |
| 101 | 100 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐼 = ∅ ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) = ( 𝐺 ( ℝn ‘ 𝐼 ) 𝐺 ) ) |
| 102 | met0 | ⊢ ( ( ( ℝn ‘ 𝐼 ) ∈ ( Met ‘ 𝑋 ) ∧ 𝐺 ∈ 𝑋 ) → ( 𝐺 ( ℝn ‘ 𝐼 ) 𝐺 ) = 0 ) | |
| 103 | 56 34 102 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐺 ( ℝn ‘ 𝐼 ) 𝐺 ) = 0 ) |
| 104 | hashcl | ⊢ ( 𝐼 ∈ Fin → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) | |
| 105 | 6 104 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
| 106 | 105 | nn0red | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ♯ ‘ 𝐼 ) ∈ ℝ ) |
| 107 | 105 | nn0ge0d | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 0 ≤ ( ♯ ‘ 𝐼 ) ) |
| 108 | 106 107 | resqrtcld | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ ) |
| 109 | 1 2 3 | repwsmet | ⊢ ( 𝐼 ∈ Fin → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 110 | 6 109 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 111 | metcl | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 𝐷 𝐺 ) ∈ ℝ ) | |
| 112 | 110 23 34 111 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 𝐷 𝐺 ) ∈ ℝ ) |
| 113 | 106 107 | sqrtge0d | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 0 ≤ ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) |
| 114 | metge0 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 0 ≤ ( 𝐹 𝐷 𝐺 ) ) | |
| 115 | 110 23 34 114 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 0 ≤ ( 𝐹 𝐷 𝐺 ) ) |
| 116 | 108 112 113 115 | mulge0d | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → 0 ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ) |
| 117 | 103 116 | eqbrtrd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐺 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ) |
| 118 | 117 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐼 = ∅ ) → ( 𝐺 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ) |
| 119 | 101 118 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐼 = ∅ ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ) |
| 120 | 82 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ∈ ℝ ) |
| 121 | 108 112 | remulcld | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ∈ ℝ ) |
| 122 | 121 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ∈ ℝ ) |
| 123 | rpre | ⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ ) | |
| 124 | 123 | ad2antll | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 𝑟 ∈ ℝ ) |
| 125 | 122 124 | readdcld | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ∈ ℝ ) |
| 126 | 6 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 𝐼 ∈ Fin ) |
| 127 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 𝐼 ≠ ∅ ) | |
| 128 | eldifsn | ⊢ ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ↔ ( 𝐼 ∈ Fin ∧ 𝐼 ≠ ∅ ) ) | |
| 129 | 126 127 128 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 𝐼 ∈ ( Fin ∖ { ∅ } ) ) |
| 130 | 23 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 𝐹 ∈ 𝑋 ) |
| 131 | 34 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 𝐺 ∈ 𝑋 ) |
| 132 | 112 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝐹 𝐷 𝐺 ) ∈ ℝ ) |
| 133 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 𝑟 ∈ ℝ+ ) | |
| 134 | hashnncl | ⊢ ( 𝐼 ∈ Fin → ( ( ♯ ‘ 𝐼 ) ∈ ℕ ↔ 𝐼 ≠ ∅ ) ) | |
| 135 | 126 134 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( ♯ ‘ 𝐼 ) ∈ ℕ ↔ 𝐼 ≠ ∅ ) ) |
| 136 | 127 135 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ♯ ‘ 𝐼 ) ∈ ℕ ) |
| 137 | 136 | nnrpd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ♯ ‘ 𝐼 ) ∈ ℝ+ ) |
| 138 | 137 | rpsqrtcld | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ+ ) |
| 139 | 133 138 | rpdivcld | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ+ ) |
| 140 | 139 | rpred | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℝ ) |
| 141 | 132 140 | readdcld | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ ) |
| 142 | 0red | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 0 ∈ ℝ ) | |
| 143 | 115 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 0 ≤ ( 𝐹 𝐷 𝐺 ) ) |
| 144 | 132 139 | ltaddrpd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝐹 𝐷 𝐺 ) < ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 145 | 142 132 141 143 144 | lelttrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 0 < ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 146 | 141 145 | elrpd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ+ ) |
| 147 | 72 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
| 148 | 132 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 𝐷 𝐺 ) ∈ ℝ ) |
| 149 | 141 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ ) |
| 150 | 80 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) ⊆ ℝ* ) |
| 151 | ssun1 | ⊢ ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ⊆ ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) | |
| 152 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → 𝑘 ∈ 𝐼 ) | |
| 153 | 50 | elrnmpt1 | ⊢ ( ( 𝑘 ∈ 𝐼 ∧ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ V ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 154 | 152 48 153 | sylancl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 155 | 151 154 | sselid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) ) |
| 156 | supxrub | ⊢ ( ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) ⊆ ℝ* ∧ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ sup ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) | |
| 157 | 150 155 156 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ sup ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 158 | 42 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 𝐷 𝐺 ) = sup ( ( ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 159 | 157 158 | breqtrrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐹 𝐷 𝐺 ) ) |
| 160 | 144 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 𝐷 𝐺 ) < ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 161 | 147 148 149 159 160 | lelttrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 162 | 161 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ∀ 𝑘 ∈ 𝐼 ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 163 | 3 43 | rrndstprj2 | ⊢ ( ( ( 𝐼 ∈ ( Fin ∖ { ∅ } ) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ∈ ℝ+ ∧ ∀ 𝑘 ∈ 𝐼 ( ( 𝐹 ‘ 𝑘 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) < ( ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
| 164 | 129 130 131 146 162 163 | syl32anc | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) < ( ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) |
| 165 | 132 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝐹 𝐷 𝐺 ) ∈ ℂ ) |
| 166 | 140 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ∈ ℂ ) |
| 167 | 108 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℝ ) |
| 168 | 167 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ∈ ℂ ) |
| 169 | 165 166 168 | adddird | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) = ( ( ( 𝐹 𝐷 𝐺 ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) + ( ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) ) |
| 170 | 165 168 | mulcomd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( 𝐹 𝐷 𝐺 ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) = ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ) |
| 171 | 124 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → 𝑟 ∈ ℂ ) |
| 172 | 138 | rpne0d | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( √ ‘ ( ♯ ‘ 𝐼 ) ) ≠ 0 ) |
| 173 | 171 168 172 | divcan1d | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) = 𝑟 ) |
| 174 | 170 173 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( ( 𝐹 𝐷 𝐺 ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) + ( ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) = ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ) |
| 175 | 169 174 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( ( ( 𝐹 𝐷 𝐺 ) + ( 𝑟 / ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) ) · ( √ ‘ ( ♯ ‘ 𝐼 ) ) ) = ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ) |
| 176 | 164 175 | breqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) < ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ) |
| 177 | 120 125 176 | ltled | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ ( 𝐼 ≠ ∅ ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ) |
| 178 | 177 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐼 ≠ ∅ ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ) |
| 179 | 178 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐼 ≠ ∅ ) → ∀ 𝑟 ∈ ℝ+ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ) |
| 180 | alrple | ⊢ ( ( ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ∈ ℝ ∧ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ∈ ℝ ) → ( ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ↔ ∀ 𝑟 ∈ ℝ+ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ) ) | |
| 181 | 82 121 180 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ↔ ∀ 𝑟 ∈ ℝ+ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ) ) |
| 182 | 181 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐼 ≠ ∅ ) → ( ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ↔ ∀ 𝑟 ∈ ℝ+ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) + 𝑟 ) ) ) |
| 183 | 179 182 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) ∧ 𝐼 ≠ ∅ ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ) |
| 184 | 119 183 | pm2.61dane | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ) |
| 185 | 87 184 | jca | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ) → ( ( 𝐹 𝐷 𝐺 ) ≤ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ∧ ( 𝐹 ( ℝn ‘ 𝐼 ) 𝐺 ) ≤ ( ( √ ‘ ( ♯ ‘ 𝐼 ) ) · ( 𝐹 𝐷 𝐺 ) ) ) ) |