This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base set of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsbas.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| pwsbas.f | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| Assertion | pwsbas | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( 𝐵 ↑m 𝐼 ) = ( Base ‘ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsbas.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| 2 | pwsbas.f | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 ) | |
| 4 | 1 3 | pwsval | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 5 | 4 | fveq2d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( Base ‘ 𝑌 ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 6 | eqid | ⊢ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) | |
| 7 | fvexd | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( Scalar ‘ 𝑅 ) ∈ V ) | |
| 8 | simpr | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝐼 ∈ 𝑊 ) | |
| 9 | snex | ⊢ { 𝑅 } ∈ V | |
| 10 | xpexg | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ { 𝑅 } ∈ V ) → ( 𝐼 × { 𝑅 } ) ∈ V ) | |
| 11 | 8 9 10 | sylancl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( 𝐼 × { 𝑅 } ) ∈ V ) |
| 12 | eqid | ⊢ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) | |
| 13 | snnzg | ⊢ ( 𝑅 ∈ 𝑉 → { 𝑅 } ≠ ∅ ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → { 𝑅 } ≠ ∅ ) |
| 15 | dmxp | ⊢ ( { 𝑅 } ≠ ∅ → dom ( 𝐼 × { 𝑅 } ) = 𝐼 ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → dom ( 𝐼 × { 𝑅 } ) = 𝐼 ) |
| 17 | 6 7 11 12 16 | prdsbas | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = X 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ) |
| 18 | fvconst2g | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) = 𝑅 ) | |
| 19 | 18 | fveq2d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼 ) → ( Base ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = ( Base ‘ 𝑅 ) ) |
| 20 | 19 | ralrimiva | ⊢ ( 𝑅 ∈ 𝑉 → ∀ 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = ( Base ‘ 𝑅 ) ) |
| 21 | 20 | adantr | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ∀ 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = ( Base ‘ 𝑅 ) ) |
| 22 | ixpeq2 | ⊢ ( ∀ 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = ( Base ‘ 𝑅 ) → X 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐼 ( Base ‘ 𝑅 ) ) | |
| 23 | 21 22 | syl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → X 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐼 ( Base ‘ 𝑅 ) ) |
| 24 | 17 23 | eqtrd | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = X 𝑥 ∈ 𝐼 ( Base ‘ 𝑅 ) ) |
| 25 | fvex | ⊢ ( Base ‘ 𝑅 ) ∈ V | |
| 26 | ixpconstg | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ ( Base ‘ 𝑅 ) ∈ V ) → X 𝑥 ∈ 𝐼 ( Base ‘ 𝑅 ) = ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) | |
| 27 | 8 25 26 | sylancl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → X 𝑥 ∈ 𝐼 ( Base ‘ 𝑅 ) = ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
| 28 | 2 | oveq1i | ⊢ ( 𝐵 ↑m 𝐼 ) = ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) |
| 29 | 27 28 | eqtr4di | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → X 𝑥 ∈ 𝐼 ( Base ‘ 𝑅 ) = ( 𝐵 ↑m 𝐼 ) ) |
| 30 | 5 24 29 | 3eqtrrd | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( 𝐵 ↑m 𝐼 ) = ( Base ‘ 𝑌 ) ) |