This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous linear functional can be expressed as an inner product. Existence part of Theorem 3.9 of Beran p. 104. (Contributed by NM, 13-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nlelch.1 | ⊢ 𝑇 ∈ LinFn | |
| nlelch.2 | ⊢ 𝑇 ∈ ContFn | ||
| Assertion | riesz3i | ⊢ ∃ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlelch.1 | ⊢ 𝑇 ∈ LinFn | |
| 2 | nlelch.2 | ⊢ 𝑇 ∈ ContFn | |
| 3 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 4 | 1 | lnfnfi | ⊢ 𝑇 : ℋ ⟶ ℂ |
| 5 | fveq2 | ⊢ ( ( ⊥ ‘ ( null ‘ 𝑇 ) ) = 0ℋ → ( ⊥ ‘ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ) = ( ⊥ ‘ 0ℋ ) ) | |
| 6 | 1 2 | nlelchi | ⊢ ( null ‘ 𝑇 ) ∈ Cℋ |
| 7 | 6 | ococi | ⊢ ( ⊥ ‘ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ) = ( null ‘ 𝑇 ) |
| 8 | choc0 | ⊢ ( ⊥ ‘ 0ℋ ) = ℋ | |
| 9 | 5 7 8 | 3eqtr3g | ⊢ ( ( ⊥ ‘ ( null ‘ 𝑇 ) ) = 0ℋ → ( null ‘ 𝑇 ) = ℋ ) |
| 10 | 9 | eleq2d | ⊢ ( ( ⊥ ‘ ( null ‘ 𝑇 ) ) = 0ℋ → ( 𝑣 ∈ ( null ‘ 𝑇 ) ↔ 𝑣 ∈ ℋ ) ) |
| 11 | 10 | biimpar | ⊢ ( ( ( ⊥ ‘ ( null ‘ 𝑇 ) ) = 0ℋ ∧ 𝑣 ∈ ℋ ) → 𝑣 ∈ ( null ‘ 𝑇 ) ) |
| 12 | elnlfn2 | ⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝑣 ∈ ( null ‘ 𝑇 ) ) → ( 𝑇 ‘ 𝑣 ) = 0 ) | |
| 13 | 4 11 12 | sylancr | ⊢ ( ( ( ⊥ ‘ ( null ‘ 𝑇 ) ) = 0ℋ ∧ 𝑣 ∈ ℋ ) → ( 𝑇 ‘ 𝑣 ) = 0 ) |
| 14 | hi02 | ⊢ ( 𝑣 ∈ ℋ → ( 𝑣 ·ih 0ℎ ) = 0 ) | |
| 15 | 14 | adantl | ⊢ ( ( ( ⊥ ‘ ( null ‘ 𝑇 ) ) = 0ℋ ∧ 𝑣 ∈ ℋ ) → ( 𝑣 ·ih 0ℎ ) = 0 ) |
| 16 | 13 15 | eqtr4d | ⊢ ( ( ( ⊥ ‘ ( null ‘ 𝑇 ) ) = 0ℋ ∧ 𝑣 ∈ ℋ ) → ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 0ℎ ) ) |
| 17 | 16 | ralrimiva | ⊢ ( ( ⊥ ‘ ( null ‘ 𝑇 ) ) = 0ℋ → ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 0ℎ ) ) |
| 18 | oveq2 | ⊢ ( 𝑤 = 0ℎ → ( 𝑣 ·ih 𝑤 ) = ( 𝑣 ·ih 0ℎ ) ) | |
| 19 | 18 | eqeq2d | ⊢ ( 𝑤 = 0ℎ → ( ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 0ℎ ) ) ) |
| 20 | 19 | ralbidv | ⊢ ( 𝑤 = 0ℎ → ( ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 0ℎ ) ) ) |
| 21 | 20 | rspcev | ⊢ ( ( 0ℎ ∈ ℋ ∧ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 0ℎ ) ) → ∃ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ) |
| 22 | 3 17 21 | sylancr | ⊢ ( ( ⊥ ‘ ( null ‘ 𝑇 ) ) = 0ℋ → ∃ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ) |
| 23 | 6 | choccli | ⊢ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∈ Cℋ |
| 24 | 23 | chne0i | ⊢ ( ( ⊥ ‘ ( null ‘ 𝑇 ) ) ≠ 0ℋ ↔ ∃ 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) 𝑢 ≠ 0ℎ ) |
| 25 | 23 | cheli | ⊢ ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) → 𝑢 ∈ ℋ ) |
| 26 | 4 | ffvelcdmi | ⊢ ( 𝑢 ∈ ℋ → ( 𝑇 ‘ 𝑢 ) ∈ ℂ ) |
| 27 | 26 | adantr | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) → ( 𝑇 ‘ 𝑢 ) ∈ ℂ ) |
| 28 | hicl | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( 𝑢 ·ih 𝑢 ) ∈ ℂ ) | |
| 29 | 28 | anidms | ⊢ ( 𝑢 ∈ ℋ → ( 𝑢 ·ih 𝑢 ) ∈ ℂ ) |
| 30 | 29 | adantr | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) → ( 𝑢 ·ih 𝑢 ) ∈ ℂ ) |
| 31 | his6 | ⊢ ( 𝑢 ∈ ℋ → ( ( 𝑢 ·ih 𝑢 ) = 0 ↔ 𝑢 = 0ℎ ) ) | |
| 32 | 31 | necon3bid | ⊢ ( 𝑢 ∈ ℋ → ( ( 𝑢 ·ih 𝑢 ) ≠ 0 ↔ 𝑢 ≠ 0ℎ ) ) |
| 33 | 32 | biimpar | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) → ( 𝑢 ·ih 𝑢 ) ≠ 0 ) |
| 34 | 27 30 33 | divcld | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) → ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ∈ ℂ ) |
| 35 | 34 | cjcld | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) → ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ∈ ℂ ) |
| 36 | simpl | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) → 𝑢 ∈ ℋ ) | |
| 37 | hvmulcl | ⊢ ( ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ∈ ℂ ∧ 𝑢 ∈ ℋ ) → ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ∈ ℋ ) | |
| 38 | 35 36 37 | syl2anc | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) → ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ∈ ℋ ) |
| 39 | 38 | adantll | ⊢ ( ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) ∧ 𝑢 ≠ 0ℎ ) → ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ∈ ℋ ) |
| 40 | hvmulcl | ⊢ ( ( ( 𝑇 ‘ 𝑢 ) ∈ ℂ ∧ 𝑣 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ∈ ℋ ) | |
| 41 | 26 40 | sylan | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ∈ ℋ ) |
| 42 | 4 | ffvelcdmi | ⊢ ( 𝑣 ∈ ℋ → ( 𝑇 ‘ 𝑣 ) ∈ ℂ ) |
| 43 | hvmulcl | ⊢ ( ( ( 𝑇 ‘ 𝑣 ) ∈ ℂ ∧ 𝑢 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ∈ ℋ ) | |
| 44 | 42 43 | sylan | ⊢ ( ( 𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ∈ ℋ ) |
| 45 | 44 | ancoms | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ∈ ℋ ) |
| 46 | simpl | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → 𝑢 ∈ ℋ ) | |
| 47 | his2sub | ⊢ ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ∈ ℋ ∧ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ·ih 𝑢 ) = ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ·ih 𝑢 ) − ( ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ·ih 𝑢 ) ) ) | |
| 48 | 41 45 46 47 | syl3anc | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ·ih 𝑢 ) = ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ·ih 𝑢 ) − ( ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ·ih 𝑢 ) ) ) |
| 49 | 26 | adantr | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( 𝑇 ‘ 𝑢 ) ∈ ℂ ) |
| 50 | simpr | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → 𝑣 ∈ ℋ ) | |
| 51 | ax-his3 | ⊢ ( ( ( 𝑇 ‘ 𝑢 ) ∈ ℂ ∧ 𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ·ih 𝑢 ) = ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) ) | |
| 52 | 49 50 46 51 | syl3anc | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ·ih 𝑢 ) = ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) ) |
| 53 | 42 | adantl | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( 𝑇 ‘ 𝑣 ) ∈ ℂ ) |
| 54 | ax-his3 | ⊢ ( ( ( 𝑇 ‘ 𝑣 ) ∈ ℂ ∧ 𝑢 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ·ih 𝑢 ) = ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) | |
| 55 | 53 46 46 54 | syl3anc | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ·ih 𝑢 ) = ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) |
| 56 | 52 55 | oveq12d | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ·ih 𝑢 ) − ( ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ·ih 𝑢 ) ) = ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) − ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) ) |
| 57 | 48 56 | eqtr2d | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) − ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) = ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ·ih 𝑢 ) ) |
| 58 | 57 | adantll | ⊢ ( ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) ∧ 𝑣 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) − ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) = ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ·ih 𝑢 ) ) |
| 59 | hvsubcl | ⊢ ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ∈ ℋ ∧ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ∈ ℋ ) | |
| 60 | 41 45 59 | syl2anc | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ∈ ℋ ) |
| 61 | 1 | lnfnsubi | ⊢ ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ∈ ℋ ∧ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ∈ ℋ ) → ( 𝑇 ‘ ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ) = ( ( 𝑇 ‘ ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ) − ( 𝑇 ‘ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ) ) |
| 62 | 41 45 61 | syl2anc | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( 𝑇 ‘ ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ) = ( ( 𝑇 ‘ ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ) − ( 𝑇 ‘ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ) ) |
| 63 | 1 | lnfnmuli | ⊢ ( ( ( 𝑇 ‘ 𝑢 ) ∈ ℂ ∧ 𝑣 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ) = ( ( 𝑇 ‘ 𝑢 ) · ( 𝑇 ‘ 𝑣 ) ) ) |
| 64 | 26 63 | sylan | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ) = ( ( 𝑇 ‘ 𝑢 ) · ( 𝑇 ‘ 𝑣 ) ) ) |
| 65 | 1 | lnfnmuli | ⊢ ( ( ( 𝑇 ‘ 𝑣 ) ∈ ℂ ∧ 𝑢 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) = ( ( 𝑇 ‘ 𝑣 ) · ( 𝑇 ‘ 𝑢 ) ) ) |
| 66 | mulcom | ⊢ ( ( ( 𝑇 ‘ 𝑣 ) ∈ ℂ ∧ ( 𝑇 ‘ 𝑢 ) ∈ ℂ ) → ( ( 𝑇 ‘ 𝑣 ) · ( 𝑇 ‘ 𝑢 ) ) = ( ( 𝑇 ‘ 𝑢 ) · ( 𝑇 ‘ 𝑣 ) ) ) | |
| 67 | 26 66 | sylan2 | ⊢ ( ( ( 𝑇 ‘ 𝑣 ) ∈ ℂ ∧ 𝑢 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑣 ) · ( 𝑇 ‘ 𝑢 ) ) = ( ( 𝑇 ‘ 𝑢 ) · ( 𝑇 ‘ 𝑣 ) ) ) |
| 68 | 65 67 | eqtrd | ⊢ ( ( ( 𝑇 ‘ 𝑣 ) ∈ ℂ ∧ 𝑢 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) = ( ( 𝑇 ‘ 𝑢 ) · ( 𝑇 ‘ 𝑣 ) ) ) |
| 69 | 42 68 | sylan | ⊢ ( ( 𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) = ( ( 𝑇 ‘ 𝑢 ) · ( 𝑇 ‘ 𝑣 ) ) ) |
| 70 | 69 | ancoms | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) = ( ( 𝑇 ‘ 𝑢 ) · ( 𝑇 ‘ 𝑣 ) ) ) |
| 71 | 64 70 | oveq12d | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( 𝑇 ‘ ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) ) − ( 𝑇 ‘ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ) = ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑇 ‘ 𝑣 ) ) − ( ( 𝑇 ‘ 𝑢 ) · ( 𝑇 ‘ 𝑣 ) ) ) ) |
| 72 | mulcl | ⊢ ( ( ( 𝑇 ‘ 𝑢 ) ∈ ℂ ∧ ( 𝑇 ‘ 𝑣 ) ∈ ℂ ) → ( ( 𝑇 ‘ 𝑢 ) · ( 𝑇 ‘ 𝑣 ) ) ∈ ℂ ) | |
| 73 | 26 42 72 | syl2an | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑢 ) · ( 𝑇 ‘ 𝑣 ) ) ∈ ℂ ) |
| 74 | 73 | subidd | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑇 ‘ 𝑣 ) ) − ( ( 𝑇 ‘ 𝑢 ) · ( 𝑇 ‘ 𝑣 ) ) ) = 0 ) |
| 75 | 62 71 74 | 3eqtrd | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( 𝑇 ‘ ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ) = 0 ) |
| 76 | elnlfn | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ∈ ( null ‘ 𝑇 ) ↔ ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ∈ ℋ ∧ ( 𝑇 ‘ ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ) = 0 ) ) ) | |
| 77 | 4 76 | ax-mp | ⊢ ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ∈ ( null ‘ 𝑇 ) ↔ ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ∈ ℋ ∧ ( 𝑇 ‘ ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ) = 0 ) ) |
| 78 | 60 75 77 | sylanbrc | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ∈ ( null ‘ 𝑇 ) ) |
| 79 | 6 | chssii | ⊢ ( null ‘ 𝑇 ) ⊆ ℋ |
| 80 | ocorth | ⊢ ( ( null ‘ 𝑇 ) ⊆ ℋ → ( ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ∈ ( null ‘ 𝑇 ) ∧ 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ) → ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ·ih 𝑢 ) = 0 ) ) | |
| 81 | 79 80 | ax-mp | ⊢ ( ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ∈ ( null ‘ 𝑇 ) ∧ 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ) → ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ·ih 𝑢 ) = 0 ) |
| 82 | 78 81 | sylan | ⊢ ( ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) ∧ 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ) → ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ·ih 𝑢 ) = 0 ) |
| 83 | 82 | ancoms | ⊢ ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) ) → ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ·ih 𝑢 ) = 0 ) |
| 84 | 83 | anassrs | ⊢ ( ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) ∧ 𝑣 ∈ ℋ ) → ( ( ( ( 𝑇 ‘ 𝑢 ) ·ℎ 𝑣 ) −ℎ ( ( 𝑇 ‘ 𝑣 ) ·ℎ 𝑢 ) ) ·ih 𝑢 ) = 0 ) |
| 85 | 58 84 | eqtrd | ⊢ ( ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) ∧ 𝑣 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) − ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) = 0 ) |
| 86 | hicl | ⊢ ( ( 𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( 𝑣 ·ih 𝑢 ) ∈ ℂ ) | |
| 87 | 86 | ancoms | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( 𝑣 ·ih 𝑢 ) ∈ ℂ ) |
| 88 | 49 87 | mulcld | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) ∈ ℂ ) |
| 89 | mulcl | ⊢ ( ( ( 𝑇 ‘ 𝑣 ) ∈ ℂ ∧ ( 𝑢 ·ih 𝑢 ) ∈ ℂ ) → ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ∈ ℂ ) | |
| 90 | 42 29 89 | syl2anr | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ∈ ℂ ) |
| 91 | 88 90 | subeq0ad | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ) → ( ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) − ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) = 0 ↔ ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) = ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) ) |
| 92 | 91 | adantll | ⊢ ( ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) ∧ 𝑣 ∈ ℋ ) → ( ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) − ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) = 0 ↔ ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) = ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) ) |
| 93 | 85 92 | mpbid | ⊢ ( ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) ∧ 𝑣 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) = ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) |
| 94 | 93 | adantlr | ⊢ ( ( ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) = ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) |
| 95 | 88 | adantlr | ⊢ ( ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) ∈ ℂ ) |
| 96 | 42 | adantl | ⊢ ( ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( 𝑇 ‘ 𝑣 ) ∈ ℂ ) |
| 97 | 30 33 | jca | ⊢ ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) → ( ( 𝑢 ·ih 𝑢 ) ∈ ℂ ∧ ( 𝑢 ·ih 𝑢 ) ≠ 0 ) ) |
| 98 | 97 | adantr | ⊢ ( ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( ( 𝑢 ·ih 𝑢 ) ∈ ℂ ∧ ( 𝑢 ·ih 𝑢 ) ≠ 0 ) ) |
| 99 | divmul3 | ⊢ ( ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) ∈ ℂ ∧ ( 𝑇 ‘ 𝑣 ) ∈ ℂ ∧ ( ( 𝑢 ·ih 𝑢 ) ∈ ℂ ∧ ( 𝑢 ·ih 𝑢 ) ≠ 0 ) ) → ( ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) / ( 𝑢 ·ih 𝑢 ) ) = ( 𝑇 ‘ 𝑣 ) ↔ ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) = ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) ) | |
| 100 | 95 96 98 99 | syl3anc | ⊢ ( ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) / ( 𝑢 ·ih 𝑢 ) ) = ( 𝑇 ‘ 𝑣 ) ↔ ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) = ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) ) |
| 101 | 100 | adantlll | ⊢ ( ( ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) / ( 𝑢 ·ih 𝑢 ) ) = ( 𝑇 ‘ 𝑣 ) ↔ ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) = ( ( 𝑇 ‘ 𝑣 ) · ( 𝑢 ·ih 𝑢 ) ) ) ) |
| 102 | 94 101 | mpbird | ⊢ ( ( ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) / ( 𝑢 ·ih 𝑢 ) ) = ( 𝑇 ‘ 𝑣 ) ) |
| 103 | 27 | adantr | ⊢ ( ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( 𝑇 ‘ 𝑢 ) ∈ ℂ ) |
| 104 | 87 | adantlr | ⊢ ( ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( 𝑣 ·ih 𝑢 ) ∈ ℂ ) |
| 105 | div23 | ⊢ ( ( ( 𝑇 ‘ 𝑢 ) ∈ ℂ ∧ ( 𝑣 ·ih 𝑢 ) ∈ ℂ ∧ ( ( 𝑢 ·ih 𝑢 ) ∈ ℂ ∧ ( 𝑢 ·ih 𝑢 ) ≠ 0 ) ) → ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) / ( 𝑢 ·ih 𝑢 ) ) = ( ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) · ( 𝑣 ·ih 𝑢 ) ) ) | |
| 106 | 103 104 98 105 | syl3anc | ⊢ ( ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) / ( 𝑢 ·ih 𝑢 ) ) = ( ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) · ( 𝑣 ·ih 𝑢 ) ) ) |
| 107 | 34 | adantr | ⊢ ( ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ∈ ℂ ) |
| 108 | simpr | ⊢ ( ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → 𝑣 ∈ ℋ ) | |
| 109 | simpll | ⊢ ( ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → 𝑢 ∈ ℋ ) | |
| 110 | his52 | ⊢ ( ( ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ∈ ℂ ∧ 𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( 𝑣 ·ih ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ) = ( ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) · ( 𝑣 ·ih 𝑢 ) ) ) | |
| 111 | 107 108 109 110 | syl3anc | ⊢ ( ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( 𝑣 ·ih ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ) = ( ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) · ( 𝑣 ·ih 𝑢 ) ) ) |
| 112 | 106 111 | eqtr4d | ⊢ ( ( ( 𝑢 ∈ ℋ ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) / ( 𝑢 ·ih 𝑢 ) ) = ( 𝑣 ·ih ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ) ) |
| 113 | 112 | adantlll | ⊢ ( ( ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑢 ) · ( 𝑣 ·ih 𝑢 ) ) / ( 𝑢 ·ih 𝑢 ) ) = ( 𝑣 ·ih ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ) ) |
| 114 | 102 113 | eqtr3d | ⊢ ( ( ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) ∧ 𝑢 ≠ 0ℎ ) ∧ 𝑣 ∈ ℋ ) → ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ) ) |
| 115 | 114 | ralrimiva | ⊢ ( ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) ∧ 𝑢 ≠ 0ℎ ) → ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ) ) |
| 116 | oveq2 | ⊢ ( 𝑤 = ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) → ( 𝑣 ·ih 𝑤 ) = ( 𝑣 ·ih ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ) ) | |
| 117 | 116 | eqeq2d | ⊢ ( 𝑤 = ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) → ( ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ) ) ) |
| 118 | 117 | ralbidv | ⊢ ( 𝑤 = ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) → ( ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ) ) ) |
| 119 | 118 | rspcev | ⊢ ( ( ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ∈ ℋ ∧ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih ( ( ∗ ‘ ( ( 𝑇 ‘ 𝑢 ) / ( 𝑢 ·ih 𝑢 ) ) ) ·ℎ 𝑢 ) ) ) → ∃ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ) |
| 120 | 39 115 119 | syl2anc | ⊢ ( ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) ∧ 𝑢 ≠ 0ℎ ) → ∃ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ) |
| 121 | 120 | ex | ⊢ ( ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) ∧ 𝑢 ∈ ℋ ) → ( 𝑢 ≠ 0ℎ → ∃ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ) ) |
| 122 | 25 121 | mpdan | ⊢ ( 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) → ( 𝑢 ≠ 0ℎ → ∃ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ) ) |
| 123 | 122 | rexlimiv | ⊢ ( ∃ 𝑢 ∈ ( ⊥ ‘ ( null ‘ 𝑇 ) ) 𝑢 ≠ 0ℎ → ∃ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ) |
| 124 | 24 123 | sylbi | ⊢ ( ( ⊥ ‘ ( null ‘ 𝑇 ) ) ≠ 0ℋ → ∃ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ) |
| 125 | 22 124 | pm2.61ine | ⊢ ∃ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) |