This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for inner product. (Contributed by NM, 13-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | his52 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) = ( 𝐴 · ( 𝐵 ·ih 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjcl | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) | |
| 2 | his5 | ⊢ ( ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) = ( ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) · ( 𝐵 ·ih 𝐶 ) ) ) | |
| 3 | 1 2 | syl3an1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) = ( ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) · ( 𝐵 ·ih 𝐶 ) ) ) |
| 4 | cjcj | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) = 𝐴 ) | |
| 5 | 4 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) · ( 𝐵 ·ih 𝐶 ) ) = ( 𝐴 · ( 𝐵 ·ih 𝐶 ) ) ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) · ( 𝐵 ·ih 𝐶 ) ) = ( 𝐴 · ( 𝐵 ·ih 𝐶 ) ) ) |
| 7 | 3 6 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) = ( 𝐴 · ( 𝐵 ·ih 𝐶 ) ) ) |