This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between division and multiplication. (Contributed by NM, 13-Feb-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divmul3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) = 𝐵 ↔ 𝐴 = ( 𝐵 · 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divmul2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) = 𝐵 ↔ 𝐴 = ( 𝐶 · 𝐵 ) ) ) | |
| 2 | mulcom | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) | |
| 3 | 2 | adantrr | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) |
| 4 | 3 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) |
| 5 | 4 | eqeq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 = ( 𝐵 · 𝐶 ) ↔ 𝐴 = ( 𝐶 · 𝐵 ) ) ) |
| 6 | 1 5 | bitr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) = 𝐵 ↔ 𝐴 = ( 𝐵 · 𝐶 ) ) ) |