This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The null space of a continuous linear functional is a closed subspace. Remark 3.8 of Beran p. 103. (Contributed by NM, 11-Feb-2006) (Proof shortened by Mario Carneiro, 19-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nlelch.1 | ⊢ 𝑇 ∈ LinFn | |
| nlelch.2 | ⊢ 𝑇 ∈ ContFn | ||
| Assertion | nlelchi | ⊢ ( null ‘ 𝑇 ) ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlelch.1 | ⊢ 𝑇 ∈ LinFn | |
| 2 | nlelch.2 | ⊢ 𝑇 ∈ ContFn | |
| 3 | 1 | nlelshi | ⊢ ( null ‘ 𝑇 ) ∈ Sℋ |
| 4 | vex | ⊢ 𝑥 ∈ V | |
| 5 | 4 | hlimveci | ⊢ ( 𝑓 ⇝𝑣 𝑥 → 𝑥 ∈ ℋ ) |
| 6 | 5 | adantl | ⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ ℋ ) |
| 7 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 8 | 7 | cnfldhaus | ⊢ ( TopOpen ‘ ℂfld ) ∈ Haus |
| 9 | 8 | a1i | ⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → ( TopOpen ‘ ℂfld ) ∈ Haus ) |
| 10 | eqid | ⊢ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 11 | eqid | ⊢ ( normℎ ∘ −ℎ ) = ( normℎ ∘ −ℎ ) | |
| 12 | 10 11 | hhims | ⊢ ( normℎ ∘ −ℎ ) = ( IndMet ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |
| 13 | eqid | ⊢ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) = ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) | |
| 14 | 10 12 13 | hhlm | ⊢ ⇝𝑣 = ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ↾ ( ℋ ↑m ℕ ) ) |
| 15 | resss | ⊢ ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ↾ ( ℋ ↑m ℕ ) ) ⊆ ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) | |
| 16 | 14 15 | eqsstri | ⊢ ⇝𝑣 ⊆ ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) |
| 17 | 16 | ssbri | ⊢ ( 𝑓 ⇝𝑣 𝑥 → 𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) 𝑥 ) |
| 18 | 17 | adantl | ⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) 𝑥 ) |
| 19 | 11 13 7 | hhcnf | ⊢ ContFn = ( ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 20 | 2 19 | eleqtri | ⊢ 𝑇 ∈ ( ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 21 | 20 | a1i | ⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑇 ∈ ( ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 22 | 18 21 | lmcn | ⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → ( 𝑇 ∘ 𝑓 ) ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) ( 𝑇 ‘ 𝑥 ) ) |
| 23 | 1 | lnfnfi | ⊢ 𝑇 : ℋ ⟶ ℂ |
| 24 | ffvelcdm | ⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑓 ‘ 𝑛 ) ∈ ( null ‘ 𝑇 ) ) | |
| 25 | 24 | adantlr | ⊢ ( ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑓 ‘ 𝑛 ) ∈ ( null ‘ 𝑇 ) ) |
| 26 | elnlfn2 | ⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝑓 ‘ 𝑛 ) ∈ ( null ‘ 𝑇 ) ) → ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) = 0 ) | |
| 27 | 23 25 26 | sylancr | ⊢ ( ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) = 0 ) |
| 28 | fvco3 | ⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑇 ∘ 𝑓 ) ‘ 𝑛 ) = ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 29 | 28 | adantlr | ⊢ ( ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑇 ∘ 𝑓 ) ‘ 𝑛 ) = ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 30 | c0ex | ⊢ 0 ∈ V | |
| 31 | 30 | fvconst2 | ⊢ ( 𝑛 ∈ ℕ → ( ( ℕ × { 0 } ) ‘ 𝑛 ) = 0 ) |
| 32 | 31 | adantl | ⊢ ( ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) ∧ 𝑛 ∈ ℕ ) → ( ( ℕ × { 0 } ) ‘ 𝑛 ) = 0 ) |
| 33 | 27 29 32 | 3eqtr4d | ⊢ ( ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑇 ∘ 𝑓 ) ‘ 𝑛 ) = ( ( ℕ × { 0 } ) ‘ 𝑛 ) ) |
| 34 | 33 | ralrimiva | ⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → ∀ 𝑛 ∈ ℕ ( ( 𝑇 ∘ 𝑓 ) ‘ 𝑛 ) = ( ( ℕ × { 0 } ) ‘ 𝑛 ) ) |
| 35 | ffn | ⊢ ( 𝑇 : ℋ ⟶ ℂ → 𝑇 Fn ℋ ) | |
| 36 | 23 35 | ax-mp | ⊢ 𝑇 Fn ℋ |
| 37 | simpl | ⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ) | |
| 38 | 3 | shssii | ⊢ ( null ‘ 𝑇 ) ⊆ ℋ |
| 39 | fss | ⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ ( null ‘ 𝑇 ) ⊆ ℋ ) → 𝑓 : ℕ ⟶ ℋ ) | |
| 40 | 37 38 39 | sylancl | ⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑓 : ℕ ⟶ ℋ ) |
| 41 | fnfco | ⊢ ( ( 𝑇 Fn ℋ ∧ 𝑓 : ℕ ⟶ ℋ ) → ( 𝑇 ∘ 𝑓 ) Fn ℕ ) | |
| 42 | 36 40 41 | sylancr | ⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → ( 𝑇 ∘ 𝑓 ) Fn ℕ ) |
| 43 | 30 | fconst | ⊢ ( ℕ × { 0 } ) : ℕ ⟶ { 0 } |
| 44 | ffn | ⊢ ( ( ℕ × { 0 } ) : ℕ ⟶ { 0 } → ( ℕ × { 0 } ) Fn ℕ ) | |
| 45 | 43 44 | ax-mp | ⊢ ( ℕ × { 0 } ) Fn ℕ |
| 46 | eqfnfv | ⊢ ( ( ( 𝑇 ∘ 𝑓 ) Fn ℕ ∧ ( ℕ × { 0 } ) Fn ℕ ) → ( ( 𝑇 ∘ 𝑓 ) = ( ℕ × { 0 } ) ↔ ∀ 𝑛 ∈ ℕ ( ( 𝑇 ∘ 𝑓 ) ‘ 𝑛 ) = ( ( ℕ × { 0 } ) ‘ 𝑛 ) ) ) | |
| 47 | 42 45 46 | sylancl | ⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → ( ( 𝑇 ∘ 𝑓 ) = ( ℕ × { 0 } ) ↔ ∀ 𝑛 ∈ ℕ ( ( 𝑇 ∘ 𝑓 ) ‘ 𝑛 ) = ( ( ℕ × { 0 } ) ‘ 𝑛 ) ) ) |
| 48 | 34 47 | mpbird | ⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → ( 𝑇 ∘ 𝑓 ) = ( ℕ × { 0 } ) ) |
| 49 | 7 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 50 | 49 | a1i | ⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 51 | 0cnd | ⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 0 ∈ ℂ ) | |
| 52 | 1zzd | ⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 1 ∈ ℤ ) | |
| 53 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 54 | 53 | lmconst | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℤ ) → ( ℕ × { 0 } ) ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 0 ) |
| 55 | 50 51 52 54 | syl3anc | ⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → ( ℕ × { 0 } ) ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 0 ) |
| 56 | 48 55 | eqbrtrd | ⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → ( 𝑇 ∘ 𝑓 ) ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 0 ) |
| 57 | 9 22 56 | lmmo | ⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → ( 𝑇 ‘ 𝑥 ) = 0 ) |
| 58 | elnlfn | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( 𝑥 ∈ ( null ‘ 𝑇 ) ↔ ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) = 0 ) ) ) | |
| 59 | 23 58 | ax-mp | ⊢ ( 𝑥 ∈ ( null ‘ 𝑇 ) ↔ ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) = 0 ) ) |
| 60 | 6 57 59 | sylanbrc | ⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ ( null ‘ 𝑇 ) ) |
| 61 | 60 | gen2 | ⊢ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ ( null ‘ 𝑇 ) ) |
| 62 | isch2 | ⊢ ( ( null ‘ 𝑇 ) ∈ Cℋ ↔ ( ( null ‘ 𝑇 ) ∈ Sℋ ∧ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ ( null ‘ 𝑇 ) ) ) ) | |
| 63 | 3 61 62 | mpbir2an | ⊢ ( null ‘ 𝑇 ) ∈ Cℋ |