This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous linear functional can be expressed as an inner product. Uniqueness part of Theorem 3.9 of Beran p. 104. (Contributed by NM, 13-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nlelch.1 | ⊢ 𝑇 ∈ LinFn | |
| nlelch.2 | ⊢ 𝑇 ∈ ContFn | ||
| Assertion | riesz4i | ⊢ ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlelch.1 | ⊢ 𝑇 ∈ LinFn | |
| 2 | nlelch.2 | ⊢ 𝑇 ∈ ContFn | |
| 3 | 1 2 | riesz3i | ⊢ ∃ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) |
| 4 | r19.26 | ⊢ ( ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) ↔ ( ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) ) | |
| 5 | oveq12 | ⊢ ( ( ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) → ( ( 𝑇 ‘ 𝑣 ) − ( 𝑇 ‘ 𝑣 ) ) = ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝑣 ∈ ℋ ∧ ( ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) ) → ( ( 𝑇 ‘ 𝑣 ) − ( 𝑇 ‘ 𝑣 ) ) = ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) ) |
| 7 | 1 | lnfnfi | ⊢ 𝑇 : ℋ ⟶ ℂ |
| 8 | 7 | ffvelcdmi | ⊢ ( 𝑣 ∈ ℋ → ( 𝑇 ‘ 𝑣 ) ∈ ℂ ) |
| 9 | 8 | subidd | ⊢ ( 𝑣 ∈ ℋ → ( ( 𝑇 ‘ 𝑣 ) − ( 𝑇 ‘ 𝑣 ) ) = 0 ) |
| 10 | 9 | adantr | ⊢ ( ( 𝑣 ∈ ℋ ∧ ( ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) ) → ( ( 𝑇 ‘ 𝑣 ) − ( 𝑇 ‘ 𝑣 ) ) = 0 ) |
| 11 | 6 10 | eqtr3d | ⊢ ( ( 𝑣 ∈ ℋ ∧ ( ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) ) → ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) = 0 ) |
| 12 | 11 | ralimiaa | ⊢ ( ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) → ∀ 𝑣 ∈ ℋ ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) = 0 ) |
| 13 | 4 12 | sylbir | ⊢ ( ( ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) → ∀ 𝑣 ∈ ℋ ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) = 0 ) |
| 14 | hvsubcl | ⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( 𝑤 −ℎ 𝑢 ) ∈ ℋ ) | |
| 15 | oveq1 | ⊢ ( 𝑣 = ( 𝑤 −ℎ 𝑢 ) → ( 𝑣 ·ih 𝑤 ) = ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑤 ) ) | |
| 16 | oveq1 | ⊢ ( 𝑣 = ( 𝑤 −ℎ 𝑢 ) → ( 𝑣 ·ih 𝑢 ) = ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑢 ) ) | |
| 17 | 15 16 | oveq12d | ⊢ ( 𝑣 = ( 𝑤 −ℎ 𝑢 ) → ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) = ( ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑤 ) − ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑢 ) ) ) |
| 18 | 17 | eqeq1d | ⊢ ( 𝑣 = ( 𝑤 −ℎ 𝑢 ) → ( ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) = 0 ↔ ( ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑤 ) − ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑢 ) ) = 0 ) ) |
| 19 | 18 | rspcv | ⊢ ( ( 𝑤 −ℎ 𝑢 ) ∈ ℋ → ( ∀ 𝑣 ∈ ℋ ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) = 0 → ( ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑤 ) − ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑢 ) ) = 0 ) ) |
| 20 | 14 19 | syl | ⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ∀ 𝑣 ∈ ℋ ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) = 0 → ( ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑤 ) − ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑢 ) ) = 0 ) ) |
| 21 | normcl | ⊢ ( ( 𝑤 −ℎ 𝑢 ) ∈ ℋ → ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) ∈ ℝ ) | |
| 22 | 21 | recnd | ⊢ ( ( 𝑤 −ℎ 𝑢 ) ∈ ℋ → ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) ∈ ℂ ) |
| 23 | sqeq0 | ⊢ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) ∈ ℂ → ( ( ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) ↑ 2 ) = 0 ↔ ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) = 0 ) ) | |
| 24 | 22 23 | syl | ⊢ ( ( 𝑤 −ℎ 𝑢 ) ∈ ℋ → ( ( ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) ↑ 2 ) = 0 ↔ ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) = 0 ) ) |
| 25 | norm-i | ⊢ ( ( 𝑤 −ℎ 𝑢 ) ∈ ℋ → ( ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) = 0 ↔ ( 𝑤 −ℎ 𝑢 ) = 0ℎ ) ) | |
| 26 | 24 25 | bitrd | ⊢ ( ( 𝑤 −ℎ 𝑢 ) ∈ ℋ → ( ( ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) ↑ 2 ) = 0 ↔ ( 𝑤 −ℎ 𝑢 ) = 0ℎ ) ) |
| 27 | 14 26 | syl | ⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) ↑ 2 ) = 0 ↔ ( 𝑤 −ℎ 𝑢 ) = 0ℎ ) ) |
| 28 | normsq | ⊢ ( ( 𝑤 −ℎ 𝑢 ) ∈ ℋ → ( ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) ↑ 2 ) = ( ( 𝑤 −ℎ 𝑢 ) ·ih ( 𝑤 −ℎ 𝑢 ) ) ) | |
| 29 | 14 28 | syl | ⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) ↑ 2 ) = ( ( 𝑤 −ℎ 𝑢 ) ·ih ( 𝑤 −ℎ 𝑢 ) ) ) |
| 30 | simpl | ⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → 𝑤 ∈ ℋ ) | |
| 31 | simpr | ⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → 𝑢 ∈ ℋ ) | |
| 32 | his2sub2 | ⊢ ( ( ( 𝑤 −ℎ 𝑢 ) ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( 𝑤 −ℎ 𝑢 ) ·ih ( 𝑤 −ℎ 𝑢 ) ) = ( ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑤 ) − ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑢 ) ) ) | |
| 33 | 14 30 31 32 | syl3anc | ⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( 𝑤 −ℎ 𝑢 ) ·ih ( 𝑤 −ℎ 𝑢 ) ) = ( ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑤 ) − ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑢 ) ) ) |
| 34 | 29 33 | eqtrd | ⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) ↑ 2 ) = ( ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑤 ) − ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑢 ) ) ) |
| 35 | 34 | eqeq1d | ⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( ( normℎ ‘ ( 𝑤 −ℎ 𝑢 ) ) ↑ 2 ) = 0 ↔ ( ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑤 ) − ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑢 ) ) = 0 ) ) |
| 36 | hvsubeq0 | ⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( 𝑤 −ℎ 𝑢 ) = 0ℎ ↔ 𝑤 = 𝑢 ) ) | |
| 37 | 27 35 36 | 3bitr3d | ⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑤 ) − ( ( 𝑤 −ℎ 𝑢 ) ·ih 𝑢 ) ) = 0 ↔ 𝑤 = 𝑢 ) ) |
| 38 | 20 37 | sylibd | ⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ∀ 𝑣 ∈ ℋ ( ( 𝑣 ·ih 𝑤 ) − ( 𝑣 ·ih 𝑢 ) ) = 0 → 𝑤 = 𝑢 ) ) |
| 39 | 13 38 | syl5 | ⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( ( ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) → 𝑤 = 𝑢 ) ) |
| 40 | 39 | rgen2 | ⊢ ∀ 𝑤 ∈ ℋ ∀ 𝑢 ∈ ℋ ( ( ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) → 𝑤 = 𝑢 ) |
| 41 | oveq2 | ⊢ ( 𝑤 = 𝑢 → ( 𝑣 ·ih 𝑤 ) = ( 𝑣 ·ih 𝑢 ) ) | |
| 42 | 41 | eqeq2d | ⊢ ( 𝑤 = 𝑢 → ( ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) ) |
| 43 | 42 | ralbidv | ⊢ ( 𝑤 = 𝑢 → ( ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) ) |
| 44 | 43 | reu4 | ⊢ ( ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ( ∃ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ∀ 𝑤 ∈ ℋ ∀ 𝑢 ∈ ℋ ( ( ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ∧ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑢 ) ) → 𝑤 = 𝑢 ) ) ) |
| 45 | 3 40 44 | mpbir2an | ⊢ ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) |