This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Zero inner product with self means vector is zero. Lemma 3.1(S6) of Beran p. 95. (Contributed by NM, 27-Jul-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | his6 | ⊢ ( 𝐴 ∈ ℋ → ( ( 𝐴 ·ih 𝐴 ) = 0 ↔ 𝐴 = 0ℎ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-his4 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( 𝐴 ·ih 𝐴 ) ) | |
| 2 | 1 | gt0ne0d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 𝐴 ·ih 𝐴 ) ≠ 0 ) |
| 3 | 2 | ex | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0ℎ → ( 𝐴 ·ih 𝐴 ) ≠ 0 ) ) |
| 4 | 3 | necon4d | ⊢ ( 𝐴 ∈ ℋ → ( ( 𝐴 ·ih 𝐴 ) = 0 → 𝐴 = 0ℎ ) ) |
| 5 | hi01 | ⊢ ( 𝐴 ∈ ℋ → ( 0ℎ ·ih 𝐴 ) = 0 ) | |
| 6 | oveq1 | ⊢ ( 𝐴 = 0ℎ → ( 𝐴 ·ih 𝐴 ) = ( 0ℎ ·ih 𝐴 ) ) | |
| 7 | 6 | eqeq1d | ⊢ ( 𝐴 = 0ℎ → ( ( 𝐴 ·ih 𝐴 ) = 0 ↔ ( 0ℎ ·ih 𝐴 ) = 0 ) ) |
| 8 | 5 7 | syl5ibrcom | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 = 0ℎ → ( 𝐴 ·ih 𝐴 ) = 0 ) ) |
| 9 | 4 8 | impbid | ⊢ ( 𝐴 ∈ ℋ → ( ( 𝐴 ·ih 𝐴 ) = 0 ↔ 𝐴 = 0ℎ ) ) |