This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction property for a linear Hilbert space functional. (Contributed by NM, 13-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lnfnl.1 | ⊢ 𝑇 ∈ LinFn | |
| Assertion | lnfnsubi | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) − ( 𝑇 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnfnl.1 | ⊢ 𝑇 ∈ LinFn | |
| 2 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 3 | 1 | lnfnaddmuli | ⊢ ( ( - 1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( ( 𝑇 ‘ 𝐴 ) + ( - 1 · ( 𝑇 ‘ 𝐵 ) ) ) ) |
| 4 | 2 3 | mp3an1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( ( 𝑇 ‘ 𝐴 ) + ( - 1 · ( 𝑇 ‘ 𝐵 ) ) ) ) |
| 5 | hvsubval | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) | |
| 6 | 5 | fveq2d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) = ( 𝑇 ‘ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) ) |
| 7 | 1 | lnfnfi | ⊢ 𝑇 : ℋ ⟶ ℂ |
| 8 | 7 | ffvelcdmi | ⊢ ( 𝐴 ∈ ℋ → ( 𝑇 ‘ 𝐴 ) ∈ ℂ ) |
| 9 | 7 | ffvelcdmi | ⊢ ( 𝐵 ∈ ℋ → ( 𝑇 ‘ 𝐵 ) ∈ ℂ ) |
| 10 | mulm1 | ⊢ ( ( 𝑇 ‘ 𝐵 ) ∈ ℂ → ( - 1 · ( 𝑇 ‘ 𝐵 ) ) = - ( 𝑇 ‘ 𝐵 ) ) | |
| 11 | 10 | oveq2d | ⊢ ( ( 𝑇 ‘ 𝐵 ) ∈ ℂ → ( ( 𝑇 ‘ 𝐴 ) + ( - 1 · ( 𝑇 ‘ 𝐵 ) ) ) = ( ( 𝑇 ‘ 𝐴 ) + - ( 𝑇 ‘ 𝐵 ) ) ) |
| 12 | 11 | adantl | ⊢ ( ( ( 𝑇 ‘ 𝐴 ) ∈ ℂ ∧ ( 𝑇 ‘ 𝐵 ) ∈ ℂ ) → ( ( 𝑇 ‘ 𝐴 ) + ( - 1 · ( 𝑇 ‘ 𝐵 ) ) ) = ( ( 𝑇 ‘ 𝐴 ) + - ( 𝑇 ‘ 𝐵 ) ) ) |
| 13 | negsub | ⊢ ( ( ( 𝑇 ‘ 𝐴 ) ∈ ℂ ∧ ( 𝑇 ‘ 𝐵 ) ∈ ℂ ) → ( ( 𝑇 ‘ 𝐴 ) + - ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) − ( 𝑇 ‘ 𝐵 ) ) ) | |
| 14 | 12 13 | eqtr2d | ⊢ ( ( ( 𝑇 ‘ 𝐴 ) ∈ ℂ ∧ ( 𝑇 ‘ 𝐵 ) ∈ ℂ ) → ( ( 𝑇 ‘ 𝐴 ) − ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) + ( - 1 · ( 𝑇 ‘ 𝐵 ) ) ) ) |
| 15 | 8 9 14 | syl2an | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) − ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) + ( - 1 · ( 𝑇 ‘ 𝐵 ) ) ) ) |
| 16 | 4 6 15 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) − ( 𝑇 ‘ 𝐵 ) ) ) |